期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于深度学习的丝绸文物纹样识别应用 被引量:2
1
作者 孙选铭 苏淼 《丝绸》 CAS CSCD 北大核心 2023年第8期1-10,共10页
为对数字化文物进行快速自动分类,提高藏品数字化进程,加快数字博物馆的构建,文章利用深度学习对丝绸文物的纹样进行自动识别。依据实物纹样的分类方法,建立了包含花卉纹、飞鸟纹、“卐”字纹、云纹四类纹样的样本库。利用VGGNet、ResNe... 为对数字化文物进行快速自动分类,提高藏品数字化进程,加快数字博物馆的构建,文章利用深度学习对丝绸文物的纹样进行自动识别。依据实物纹样的分类方法,建立了包含花卉纹、飞鸟纹、“卐”字纹、云纹四类纹样的样本库。利用VGGNet、ResNet、MobileNet实现对纹样的分类,结合Faster R-CNN、YOLOv5、SSD目标检测算法实现对纹样的识别与定位。实验结果表明,MobileNet对丝绸纹样分类的mAP达到83.51%;在目标检测算法中YOLOv5的识别与定位效果最好,其mAP为88.42%。与通过人工分类相比,采用深度学习算法进行分类与识别,可以在降低难度的同时提高分类的速度和准确率,为纺织品文物的鉴定与保护提供了新的思路。 展开更多
关键词 丝绸文物 深度学习 数字博物馆 目标检测 神经网络 自动分类
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部