期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于布朗运动与梯度信息的交替优化算法 被引量:3
1
作者 沙林秀 聂凡 +1 位作者 高倩 孟号 《计算机应用》 CSCD 北大核心 2022年第7期2139-2145,共7页
针对群智能优化算法在优化过程中容易陷入局部最优、种群多样性低以及高维函数优化困难的问题,提出一种基于布朗运动与梯度信息的交替优化算法(AOABG)。首先,采用全局、局部搜索交替的寻优策略,即在有变优趋势的范围内切换为局部搜索,... 针对群智能优化算法在优化过程中容易陷入局部最优、种群多样性低以及高维函数优化困难的问题,提出一种基于布朗运动与梯度信息的交替优化算法(AOABG)。首先,采用全局、局部搜索交替的寻优策略,即在有变优趋势的范围内切换为局部搜索,有变劣趋势的范围内切换为全局搜索;然后,局部搜索引入基于梯度信息的均匀分布概率的随机游走,全局搜索引入基于最优解位置的布朗运动的随机游走。将所提出的AOABG与近三年的哈里斯鹰优化算法(HHO)、麻雀搜索算法(SSA)、特种部队算法(SFA)在10个测试函数上对比。当测试函数维数为2、10时,AOABG在10个测试函数上的100次最终优化结果的均值与均方差均优于HHO、SSA与SFA。当测试函数为30维时,除了HHO在Levy函数上的表现优于AOABG(两者优化结果均值处于同一数量级)外,AOABG在其他9个测试函数上表现最好,与上述算法相比,优化结果均值提升了4.64%~94.89%。实验结果表明,AOABG在高维函数优化中收敛速度更快、稳定性更好、精度更高。 展开更多
关键词 交替寻优策略 高维函数优化 收敛速度 布朗运动 梯度信息
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部