It is known that α-RuCl_(3) has been studied extensively because of its proximity to the Kitaev quantum-spin-liquid(QSL)phase and the possibility of approaching it by tuning the competing interactions.Here we present...It is known that α-RuCl_(3) has been studied extensively because of its proximity to the Kitaev quantum-spin-liquid(QSL)phase and the possibility of approaching it by tuning the competing interactions.Here we present the first polarized inelastic neutron scattering study on α-RuCl_(3) single crystals to explore the scattering continuum around the Γ point at the Brillouin zone center,which was hypothesized to be resulting from the Kitaev QSL state but without concrete evidence.With polarization analyses,we find that,while the spin-wave excitations around the Γ point vanish above the transition temperature T_(N),the pure magnetic continuous excitations around the Γ point are robust against temperature.Furthermore,by calculating the dynamical spin-spin correlation function using the cluster perturbation theory,we derive magnetic dispersion spectra based on the K-Γ model,which involves with a ferromagnetic Kitaev interaction of −7.2 meV and an off-diagonal interaction of 5.6 meV.We find this model can reproduce not only the spin-wave excitation spectra around the Γ point,but also the non-spin-wave continuous magnetic excitations around the Γ point.These results provide evidence for the existence of fractional excitations around the Γ point originating from the Kitaev QSL state,and further support the validity of the K-Γ model as the effective minimal spin model to describe α-RuCl_(3).展开更多
As one of the most promising Kitaev quantum-spin-liquid(QSL)candidates,α-RuCl_(3)has received a great deal of attention.However,its ground state exhibits a long-range zigzag magnetic order,which defies the QSL phase....As one of the most promising Kitaev quantum-spin-liquid(QSL)candidates,α-RuCl_(3)has received a great deal of attention.However,its ground state exhibits a long-range zigzag magnetic order,which defies the QSL phase.Nevertheless,the magnetic order is fragile and can be completely suppressed by applying an external magnetic field.Here,we explore the evolution of magnetic excitations ofα-RuCl;under an in-plane magnetic field,by carrying out inelastic neutron scattering measurements on high-quality single crystals.Under zero field,there exist spin-wave excitations near the M point and a continuum near theΓpoint,which are believed to be associated with the zigzag magnetic order and fractional excitations of the Kitaev QSL state,respectively.By increasing the magnetic field,the spin-wave excitations gradually give way to the continuous excitations.On the verge of the critical fieldμ_(0)H_(c)=7.5 T,the former ones vanish and only the latter ones are left,indicating the emergence of a pure QSL state.By further increasing the field strength,the excitations near theΓpoint become more intense.By following the gap evolution of the excitations near theΓpoint,we are able to establish a phase diagram composed of three interesting phases,including a gapped zigzag order phase at low fields,possibly gapless QSL phase nearμ;H;,and gapped partially polarized phase at high fields.These results demonstrate that an in-plane magnetic field can driveα-RuCl;into a long-sought QSL state near the critical field.展开更多
基金supported by National Key Research and Development Program of China(Grant No.2021YFA1400400)the National Natural Science Foundation of China(Grant Nos.11822405,12074174,12074175,11774152,11904170,12004249,12004251,and 12004191)+3 种基金the Natural Science Foundation of Jiangsu Province(Grant Nos.BK20180006,BK20190436 and BK20200738)the Shanghai Sailing Program(Grant Nos.20YF1430600 and21YF1429200)the Fundamental Research Funds for the Central Universities(Grant No.020414380183)the Office of International Cooperation and Exchanges of Nanjing University。
文摘It is known that α-RuCl_(3) has been studied extensively because of its proximity to the Kitaev quantum-spin-liquid(QSL)phase and the possibility of approaching it by tuning the competing interactions.Here we present the first polarized inelastic neutron scattering study on α-RuCl_(3) single crystals to explore the scattering continuum around the Γ point at the Brillouin zone center,which was hypothesized to be resulting from the Kitaev QSL state but without concrete evidence.With polarization analyses,we find that,while the spin-wave excitations around the Γ point vanish above the transition temperature T_(N),the pure magnetic continuous excitations around the Γ point are robust against temperature.Furthermore,by calculating the dynamical spin-spin correlation function using the cluster perturbation theory,we derive magnetic dispersion spectra based on the K-Γ model,which involves with a ferromagnetic Kitaev interaction of −7.2 meV and an off-diagonal interaction of 5.6 meV.We find this model can reproduce not only the spin-wave excitation spectra around the Γ point,but also the non-spin-wave continuous magnetic excitations around the Γ point.These results provide evidence for the existence of fractional excitations around the Γ point originating from the Kitaev QSL state,and further support the validity of the K-Γ model as the effective minimal spin model to describe α-RuCl_(3).
基金supported by the National Key Research and Development Program of China(Grant No.2021YFA1400400)the National Natural Science Foundation of China(Grant Nos.11822405,12074174,12074175,92165205,11904170,12004249,12004251,and 12004191)+1 种基金the Natural Science Foundation of Jiangsu Province(Grant Nos.BK20180006,BK20190436,and BK20200738)the Shanghai Sailing Program(Grant Nos.20YF1430600 and 21YF1429200)。
文摘As one of the most promising Kitaev quantum-spin-liquid(QSL)candidates,α-RuCl_(3)has received a great deal of attention.However,its ground state exhibits a long-range zigzag magnetic order,which defies the QSL phase.Nevertheless,the magnetic order is fragile and can be completely suppressed by applying an external magnetic field.Here,we explore the evolution of magnetic excitations ofα-RuCl;under an in-plane magnetic field,by carrying out inelastic neutron scattering measurements on high-quality single crystals.Under zero field,there exist spin-wave excitations near the M point and a continuum near theΓpoint,which are believed to be associated with the zigzag magnetic order and fractional excitations of the Kitaev QSL state,respectively.By increasing the magnetic field,the spin-wave excitations gradually give way to the continuous excitations.On the verge of the critical fieldμ_(0)H_(c)=7.5 T,the former ones vanish and only the latter ones are left,indicating the emergence of a pure QSL state.By further increasing the field strength,the excitations near theΓpoint become more intense.By following the gap evolution of the excitations near theΓpoint,we are able to establish a phase diagram composed of three interesting phases,including a gapped zigzag order phase at low fields,possibly gapless QSL phase nearμ;H;,and gapped partially polarized phase at high fields.These results demonstrate that an in-plane magnetic field can driveα-RuCl;into a long-sought QSL state near the critical field.