为了完成线性调频(linear frequency modulation,LFM)信号的稀疏采样,并利用稀疏数据对原始信号参数进行估计,本文提出了一种基于Z变换和改进有限新息率(finite rate of innovation,FRI)的LFM信号参数估计方法。以Z变换理论为基础,设计...为了完成线性调频(linear frequency modulation,LFM)信号的稀疏采样,并利用稀疏数据对原始信号参数进行估计,本文提出了一种基于Z变换和改进有限新息率(finite rate of innovation,FRI)的LFM信号参数估计方法。以Z变换理论为基础,设计了一种数学模型,一旦信号能够表达成该数学模型的结构形式,就能通过Z变换和零化滤波器的方法估计信号参数。然后,利用了自相关延迟的FRI结构对LFM信号采样,该结构不仅完成了LFM信号的稀疏采样,而且稀疏采样结果能够与数学模型结构相符。在理论上通过数学论证的方式证明了所提方法能够用于获取LFM信号参数信息,并通过仿真和实测数据验证了所提方法的有效性,理论和实验结果表明该方法只需要4个采样点就能实现对LFM信号的参数估计,并且实验中的参数估计误差均在3%以内,极大的提高有限新息率采样的参数估计效率。展开更多
文摘为了完成线性调频(linear frequency modulation,LFM)信号的稀疏采样,并利用稀疏数据对原始信号参数进行估计,本文提出了一种基于Z变换和改进有限新息率(finite rate of innovation,FRI)的LFM信号参数估计方法。以Z变换理论为基础,设计了一种数学模型,一旦信号能够表达成该数学模型的结构形式,就能通过Z变换和零化滤波器的方法估计信号参数。然后,利用了自相关延迟的FRI结构对LFM信号采样,该结构不仅完成了LFM信号的稀疏采样,而且稀疏采样结果能够与数学模型结构相符。在理论上通过数学论证的方式证明了所提方法能够用于获取LFM信号参数信息,并通过仿真和实测数据验证了所提方法的有效性,理论和实验结果表明该方法只需要4个采样点就能实现对LFM信号的参数估计,并且实验中的参数估计误差均在3%以内,极大的提高有限新息率采样的参数估计效率。