The kesterite Cu2ZnSn(S,Se)4 (CZTSSe) solar cells have yielded a prospective conversion efficiency among all thin- film photovoltaic technology. However, its further development is still hindered by the lower open...The kesterite Cu2ZnSn(S,Se)4 (CZTSSe) solar cells have yielded a prospective conversion efficiency among all thin- film photovoltaic technology. However, its further development is still hindered by the lower open-circuit voltage (Voc), and the non-ideal bandgap of the absorber is an important factor affecting this issue. The substitution of Sn with Ge provides a unique ability to engineer the bandgap of the absorber film. Herein, a simple precursor solution approach was successfully developed to fabricate Cu2Zn(SnyGel_y)(SxSe~ x)4 (CZTGSSe) solar cells. By precisely adjusting the Ge content in a small range, the Voc and Jsc are enhanced simultaneously. Benefitting from the optimized bandgap and the maintained spike structure and light absorption, the 10% Ge/(Ge+Sn) content device with a bandgap of approximately 1.1 eV yields the highest efficiency of 9.36%. This further indicates that a precisely controlled Ge content could further improve the cell performance for efficient CZTGSSe solar cells.展开更多
基金Project supported by the Joint Talent Cultivation Funds of NSFC-HN(Grant No.U1604138)the National Natural Science Foundation of China(Grant Nos.21603058 and 51702085)+2 种基金the Innovation Research Team of Science and Technology in Henan Province,China(Grant No.17IRTSTHN028)the Science and Technology Innovation Talents in Universities of Henan Province,China(Grant No.18HASTIT016)the Young Key Teacher Foundation of Universities of Henan Province,China(Grant No.2015GGJS-022)
文摘The kesterite Cu2ZnSn(S,Se)4 (CZTSSe) solar cells have yielded a prospective conversion efficiency among all thin- film photovoltaic technology. However, its further development is still hindered by the lower open-circuit voltage (Voc), and the non-ideal bandgap of the absorber is an important factor affecting this issue. The substitution of Sn with Ge provides a unique ability to engineer the bandgap of the absorber film. Herein, a simple precursor solution approach was successfully developed to fabricate Cu2Zn(SnyGel_y)(SxSe~ x)4 (CZTGSSe) solar cells. By precisely adjusting the Ge content in a small range, the Voc and Jsc are enhanced simultaneously. Benefitting from the optimized bandgap and the maintained spike structure and light absorption, the 10% Ge/(Ge+Sn) content device with a bandgap of approximately 1.1 eV yields the highest efficiency of 9.36%. This further indicates that a precisely controlled Ge content could further improve the cell performance for efficient CZTGSSe solar cells.