As a promising material in the aircraft industry,2A97 Al-Cu-Li alloy exhibits high corrosion susceptibility that may limit its application.In the present work,to illustrate the influences of precipitate and grain-stor...As a promising material in the aircraft industry,2A97 Al-Cu-Li alloy exhibits high corrosion susceptibility that may limit its application.In the present work,to illustrate the influences of precipitate and grain-stored energy on localized corrosion evolution in 2A97 Al-Cu-Li alloy,cold working and artificial aging were carried out to produce 2A97 Al-Cu-Li alloys under different thermomechanical conditions.Quasi-in-situ analysis,traditional immersion test and electrochemical measurement were then conducted to examine the corrosion behavior of 2A97 alloys.It is revealed that precipitate significantly affects Cu enrichment at corrosion fronts,which determines corrosion susceptibility of alloys,whereas grain-stored energy distribution is closely associated with localized corrosion propagation.It is also indicated that quasi-in-situ analysis exhibits a consistent corrosion evolution with traditional immersion tests,which is regarded as a proper method to explore localized corrosion mechanisms by providing local microstructural information with enhanced time and spatial resolutions.展开更多
Combining high-speed schlieren technology and infrared imaging technology,related research has been carried out on the influence of parameters such as actuation voltage,repetition frequency,and electrode size of an ac...Combining high-speed schlieren technology and infrared imaging technology,related research has been carried out on the influence of parameters such as actuation voltage,repetition frequency,and electrode size of an actuator on the discharge characteristics,induced flow field characteristics,and thermal characteristics of nanosecond pulsed dielectric barrier discharge.The results show that increasing the value of the actuation voltage can significantly increase the actuation intensity,and the plasma discharge area is significantly extended.Increasing the repetition frequency can increase the number of discharges per unit time.Both will cause more energy input and induce more changes in the flow field.The effect of temperature rise is more significant.The width of the covered electrode will affect the potential distribution during the discharge process,which in turn will affect the extension process of the plasma discharge filament.Under the same actuation intensity,the wider the covered electrode,the larger range the induced flow field and temperature rise is.Preliminary experimental analyses of high-frequency actuation characteristics,temperature field characteristics,flow field characteristics and actuation parameter settings provide support for the parameter selection and partial mechanism analysis of plasma anti-icing.展开更多
基金supports from the National Natural Science Foundation of China(Nos.52371065,52001128)the Hubei Provincial Natural Science Foundation of China(No.2023AFB637)。
文摘As a promising material in the aircraft industry,2A97 Al-Cu-Li alloy exhibits high corrosion susceptibility that may limit its application.In the present work,to illustrate the influences of precipitate and grain-stored energy on localized corrosion evolution in 2A97 Al-Cu-Li alloy,cold working and artificial aging were carried out to produce 2A97 Al-Cu-Li alloys under different thermomechanical conditions.Quasi-in-situ analysis,traditional immersion test and electrochemical measurement were then conducted to examine the corrosion behavior of 2A97 alloys.It is revealed that precipitate significantly affects Cu enrichment at corrosion fronts,which determines corrosion susceptibility of alloys,whereas grain-stored energy distribution is closely associated with localized corrosion propagation.It is also indicated that quasi-in-situ analysis exhibits a consistent corrosion evolution with traditional immersion tests,which is regarded as a proper method to explore localized corrosion mechanisms by providing local microstructural information with enhanced time and spatial resolutions.
基金supported by the National Key R&D Program of China(No.2019YFA0405300)National Natural Science Foundation of China(Nos.51907205 and 12002363)。
文摘Combining high-speed schlieren technology and infrared imaging technology,related research has been carried out on the influence of parameters such as actuation voltage,repetition frequency,and electrode size of an actuator on the discharge characteristics,induced flow field characteristics,and thermal characteristics of nanosecond pulsed dielectric barrier discharge.The results show that increasing the value of the actuation voltage can significantly increase the actuation intensity,and the plasma discharge area is significantly extended.Increasing the repetition frequency can increase the number of discharges per unit time.Both will cause more energy input and induce more changes in the flow field.The effect of temperature rise is more significant.The width of the covered electrode will affect the potential distribution during the discharge process,which in turn will affect the extension process of the plasma discharge filament.Under the same actuation intensity,the wider the covered electrode,the larger range the induced flow field and temperature rise is.Preliminary experimental analyses of high-frequency actuation characteristics,temperature field characteristics,flow field characteristics and actuation parameter settings provide support for the parameter selection and partial mechanism analysis of plasma anti-icing.