聚乙二醇(polyethylene glycol,PEG)是一种常用的种子引发剂,利用PEG调节种子在引发过程中的水分吸收,是提高种子引发效果的关键。为探究不同PEG引发浓度和引发时间条件下玉米种子水分吸收对引发效果的影响,该研究采用低场核磁共振(low-...聚乙二醇(polyethylene glycol,PEG)是一种常用的种子引发剂,利用PEG调节种子在引发过程中的水分吸收,是提高种子引发效果的关键。为探究不同PEG引发浓度和引发时间条件下玉米种子水分吸收对引发效果的影响,该研究采用低场核磁共振(low-field nuclear magnetic resonance,LF-NMR)技术动态监测不同浓度PEG引发下玉米种子水分相态变化情况,分析种子水分吸收和引发效果的关系,并结合机器学习算法构建玉米种子引发效果预测模型。结果表明:随着引发时间的增加(0~48 h),结合水含量呈现先增加后逐渐趋于稳定的趋势,而自由水含量则持续上升,总水含量呈现先增加后逐渐减缓的趋势。结合水含量刚进入滞缓阶段,即A21信号幅值基本不再增加,可作为判断玉米种子适宜引发时间的一个指标。此外,利用高斯过程回归(gaussian process regression,GPR)算法结合核磁参数和引发条件构建的模型,对玉米种子发芽率预测的R~2达到0.920,能够快速检测种子的引发效果。通过LF-NMR检测种子引发过程中的水分变化能够实现最优引发条件的快速筛选,该研究为玉米种子引发参数设置和引发效果快速评价提供了新思路。展开更多
文摘聚乙二醇(polyethylene glycol,PEG)是一种常用的种子引发剂,利用PEG调节种子在引发过程中的水分吸收,是提高种子引发效果的关键。为探究不同PEG引发浓度和引发时间条件下玉米种子水分吸收对引发效果的影响,该研究采用低场核磁共振(low-field nuclear magnetic resonance,LF-NMR)技术动态监测不同浓度PEG引发下玉米种子水分相态变化情况,分析种子水分吸收和引发效果的关系,并结合机器学习算法构建玉米种子引发效果预测模型。结果表明:随着引发时间的增加(0~48 h),结合水含量呈现先增加后逐渐趋于稳定的趋势,而自由水含量则持续上升,总水含量呈现先增加后逐渐减缓的趋势。结合水含量刚进入滞缓阶段,即A21信号幅值基本不再增加,可作为判断玉米种子适宜引发时间的一个指标。此外,利用高斯过程回归(gaussian process regression,GPR)算法结合核磁参数和引发条件构建的模型,对玉米种子发芽率预测的R~2达到0.920,能够快速检测种子的引发效果。通过LF-NMR检测种子引发过程中的水分变化能够实现最优引发条件的快速筛选,该研究为玉米种子引发参数设置和引发效果快速评价提供了新思路。