期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
利用社交媒体情感分析的短期股价趋势预测方法
被引量:
1
1
作者
季子峥
沈婷婷
张孝
《北京理工大学学报》
EI
CAS
CSCD
北大核心
2020年第1期83-89,共7页
本文旨在利用社交媒体中的情感信息来提升股价涨跌预测性能.与以往粗粒度地使用文本中的情感信息不同,将与某公司特定话题相关的细粒度情感信息引入预测模型中,并提出一个用于短期股价预测的全新特征——“话题情感”,该特征同时抽取话...
本文旨在利用社交媒体中的情感信息来提升股价涨跌预测性能.与以往粗粒度地使用文本中的情感信息不同,将与某公司特定话题相关的细粒度情感信息引入预测模型中,并提出一个用于短期股价预测的全新特征——“话题情感”,该特征同时抽取话题和情感信息,并协同利用二者来预测股价涨跌.此外,以往的测试数据集中交易日数量非常少或者仅包含单支股票的数据,本文方法构建了包含众多股票的长时间跨度数据集,并在此数据集上验证了细粒度情感分析对股价涨跌预测的良好效用.
展开更多
关键词
股价涨跌预测
社交媒体
情感分析
下载PDF
职称材料
题名
利用社交媒体情感分析的短期股价趋势预测方法
被引量:
1
1
作者
季子峥
沈婷婷
张孝
机构
北京理工大学计算机学院
出处
《北京理工大学学报》
EI
CAS
CSCD
北大核心
2020年第1期83-89,共7页
文摘
本文旨在利用社交媒体中的情感信息来提升股价涨跌预测性能.与以往粗粒度地使用文本中的情感信息不同,将与某公司特定话题相关的细粒度情感信息引入预测模型中,并提出一个用于短期股价预测的全新特征——“话题情感”,该特征同时抽取话题和情感信息,并协同利用二者来预测股价涨跌.此外,以往的测试数据集中交易日数量非常少或者仅包含单支股票的数据,本文方法构建了包含众多股票的长时间跨度数据集,并在此数据集上验证了细粒度情感分析对股价涨跌预测的良好效用.
关键词
股价涨跌预测
社交媒体
情感分析
Keywords
stock price movement prediction
social media
sentiment analysis
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
利用社交媒体情感分析的短期股价趋势预测方法
季子峥
沈婷婷
张孝
《北京理工大学学报》
EI
CAS
CSCD
北大核心
2020
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部