【目的】为了在实际应用中准确估计死亡率,提出基于长记忆特性的死亡率模型。【方法】选取个体死亡率数据,构建长记忆性死亡率模型进行研究。首先根据R/S分析(rescaled range analysis,重标极差分析)法估计死亡率队列的Hurst指数;然后...【目的】为了在实际应用中准确估计死亡率,提出基于长记忆特性的死亡率模型。【方法】选取个体死亡率数据,构建长记忆性死亡率模型进行研究。首先根据R/S分析(rescaled range analysis,重标极差分析)法估计死亡率队列的Hurst指数;然后利用长记忆性Milevsky-Promislow死亡率模型和Milevsky-Promislow死亡率模型对个体死亡率数据进行拟合对比;最后采用长记忆性死亡率模型预测个体死亡率,并将其应用到中国寿险业经验生命表中。【结果】能够捕捉长记忆性的死亡率模型对个体死亡率的拟合效果更好,队列的初始年龄、性别因素对拟合效果有一定的影响,且该模型对死亡率的预测较为准确。【结论】本研究通过构建长记忆性死亡率模型,为提高死亡率拟合预测效果提供了理论方法。展开更多
文摘【目的】为了在实际应用中准确估计死亡率,提出基于长记忆特性的死亡率模型。【方法】选取个体死亡率数据,构建长记忆性死亡率模型进行研究。首先根据R/S分析(rescaled range analysis,重标极差分析)法估计死亡率队列的Hurst指数;然后利用长记忆性Milevsky-Promislow死亡率模型和Milevsky-Promislow死亡率模型对个体死亡率数据进行拟合对比;最后采用长记忆性死亡率模型预测个体死亡率,并将其应用到中国寿险业经验生命表中。【结果】能够捕捉长记忆性的死亡率模型对个体死亡率的拟合效果更好,队列的初始年龄、性别因素对拟合效果有一定的影响,且该模型对死亡率的预测较为准确。【结论】本研究通过构建长记忆性死亡率模型,为提高死亡率拟合预测效果提供了理论方法。