针对多服务情况下协同OFDMA(orthogonal frequency division multiple access)系统的资源分配问题,在基站和中继单独功率约束条件下,以最大化用户的效用(utility)总和为目标,提出了一种基于多维离散粒子群(MDPSO)的渐进最优资源分配算...针对多服务情况下协同OFDMA(orthogonal frequency division multiple access)系统的资源分配问题,在基站和中继单独功率约束条件下,以最大化用户的效用(utility)总和为目标,提出了一种基于多维离散粒子群(MDPSO)的渐进最优资源分配算法。该算法采用多值离散变量来编码粒子位置,并针对多维离散空间构建了新的基于概率信息的粒子速度和位置更新算法,且引入变异操作来克服粒子群算法的早熟问题。此外,还采用了迭代注水法进行最优功率分配。仿真结果表明,所提算法在总效用、吞吐量和公平性上均明显优于已有资源分配算法。展开更多
文摘针对多服务情况下协同OFDMA(orthogonal frequency division multiple access)系统的资源分配问题,在基站和中继单独功率约束条件下,以最大化用户的效用(utility)总和为目标,提出了一种基于多维离散粒子群(MDPSO)的渐进最优资源分配算法。该算法采用多值离散变量来编码粒子位置,并针对多维离散空间构建了新的基于概率信息的粒子速度和位置更新算法,且引入变异操作来克服粒子群算法的早熟问题。此外,还采用了迭代注水法进行最优功率分配。仿真结果表明,所提算法在总效用、吞吐量和公平性上均明显优于已有资源分配算法。