期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
一类离散时间代数Riccati矩阵方程对称解的双迭代算法 被引量:3
1
作者 张凯院 宁倩芝 牛婷婷 《计算机工程与科学》 CSCD 北大核心 2015年第2期329-334,共6页
利用逆矩阵的Neumann级数形式,将在线性二次优化问题中遇到的含未知矩阵之逆的离散时间代数Riccati矩阵方程(DTARME)转化为高次多项式矩阵方程,然后采用牛顿算法求高次多项式矩阵方程的对称解,并采用修正共轭梯度法求由牛顿算法每一步... 利用逆矩阵的Neumann级数形式,将在线性二次优化问题中遇到的含未知矩阵之逆的离散时间代数Riccati矩阵方程(DTARME)转化为高次多项式矩阵方程,然后采用牛顿算法求高次多项式矩阵方程的对称解,并采用修正共轭梯度法求由牛顿算法每一步迭代计算导出的线性矩阵方程的对称解或者对称最小二乘解,建立求DTARME的对称解的双迭代算法。双迭代算法仅要求DTARME有对称解,不要求它的对称解唯一,也不对它的系数矩阵做附加限定。数值算例表明双迭代算法是有效的。 展开更多
关键词 Riccati矩阵方程 对称解 牛顿算法 修正共轭梯度法 双迭代算法
下载PDF
一类离散时间代数Riccati矩阵方程异类约束解的双迭代算法 被引量:1
2
作者 牛婷婷 张凯院 宁倩芝 《工程数学学报》 CSCD 北大核心 2014年第6期847-856,共10页
本文研究在最优控制系统中遇到的离散时间代数Riccati矩阵方程(DTARME)异类约束解的数值计算问题.首先对多变量DTARME中的逆矩阵采用矩阵级数方法进行等价转化,然后采用牛顿算法求多变量DTARME的异类约束解,并采用修正共轭梯度法求由牛... 本文研究在最优控制系统中遇到的离散时间代数Riccati矩阵方程(DTARME)异类约束解的数值计算问题.首先对多变量DTARME中的逆矩阵采用矩阵级数方法进行等价转化,然后采用牛顿算法求多变量DTARME的异类约束解,并采用修正共轭梯度法求由牛顿算法每一步迭代计算导出的线性矩阵方程的异类约束解或者异类约束最小二乘解,建立求多变量DTARME的异类约束解的双迭代算法.双迭代算法仅要求多变量DTARME有异类约束解,不要求它的异类约束解唯一,也不对它的系数矩阵做附加限定.数值算例表明,双迭代算法是有效的. 展开更多
关键词 异类约束解 牛顿算法 修正共轭梯度法 双迭代算法
下载PDF
非线性方程组自反解的非精确Newton-MCG算法 被引量:2
3
作者 梁志艳 张凯院 宁倩芝 《工程数学学报》 CSCD 北大核心 2016年第4期382-390,共9页
针对源于科学计算和工程应用领域的非线性代数方程组,本文应用Newton算法求其自反解,并采用修正共轭梯度法(MCG算法)求由Newton算法每一步迭代计算导出的线性代数方程组的近似自反解或其近似自反最小二乘解,建立了求其自反解的非精确New... 针对源于科学计算和工程应用领域的非线性代数方程组,本文应用Newton算法求其自反解,并采用修正共轭梯度法(MCG算法)求由Newton算法每一步迭代计算导出的线性代数方程组的近似自反解或其近似自反最小二乘解,建立了求其自反解的非精确Newton-MCG算法.基于MCG算法适用面宽和有限步收敛的特点,建立的非精确Newton-MCG算法仅要求非线性代数方程组有自反解,而不要求它的自反解唯一.数值算例表明,非精确Newton-MCG算法是有效的. 展开更多
关键词 非线性代数方程组 自反解 Newton算法 MCG算法 非精确Newton-MCG算法
下载PDF
实矩阵两类广义逆的迭代算法 被引量:1
4
作者 张凯院 宁倩芝 《数值计算与计算机应用》 CSCD 2015年第2期81-90,共10页
将计算实矩阵的Moore-Penrose逆和Drazin逆转化为线性矩阵方程组的求解问题,然后采用修正共轭梯度法求线性矩阵方程组的一般解,并通过简单的矩阵乘法运算或者直接得到实矩阵的Moore-Penrose逆和Drazin逆.修正共轭梯度法不同于通常的共... 将计算实矩阵的Moore-Penrose逆和Drazin逆转化为线性矩阵方程组的求解问题,然后采用修正共轭梯度法求线性矩阵方程组的一般解,并通过简单的矩阵乘法运算或者直接得到实矩阵的Moore-Penrose逆和Drazin逆.修正共轭梯度法不同于通常的共轭梯度法,它不要求涉及的线性代数方程组的系数矩阵正定、可逆或者列满秩,因此总是可行的.数值算例表明,这种算法是有效的. 展开更多
关键词 Moore—Penrose逆 DRAZIN逆 线性矩阵方程组 修正共轭梯度法 迭代算法
原文传递
参量连续代数Riccati方程对称解的两种迭代算法
5
作者 耿小姣 张凯院 宁倩芝 《系统科学与数学》 CSCD 北大核心 2016年第11期2060-2069,共10页
基于求线性矩阵方程约束解的修正共轭梯度法,针对源于低增益反馈设计中的一类参量连续代数Riccati方程,建立求其非零对称解的两种互为补充的迭代算法,称之为变换-MCG算法和牛顿-MCG算法.在一定条件下,当Riccati方程存在可逆对称解或唯... 基于求线性矩阵方程约束解的修正共轭梯度法,针对源于低增益反馈设计中的一类参量连续代数Riccati方程,建立求其非零对称解的两种互为补充的迭代算法,称之为变换-MCG算法和牛顿-MCG算法.在一定条件下,当Riccati方程存在可逆对称解或唯一对称正定解时,由变换-MCG算法所得对称解具备可逆性或正定性.牛顿-MCG算法仅要求Riccati方程存在非零对称解,对系数矩阵等没有附加限定,但所得对称解不能保证可逆性或正定性.数值算例表明,两种迭代算法是有效的. 展开更多
关键词 RICCATI方程 对称解 迭代算法 变换-MCG算法 牛顿.MCG算法
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部