随着电动汽车和大规模储能电网的快速发展,锂离子电池将不可避免地面临有限的能量密度无法满足日益增长的需求和成本不断上升的两大困境。室温钠-硫电池因具有高能量密度和低成本的优势而备受关注,但其存在多硫化钠的“穿梭效应”导致...随着电动汽车和大规模储能电网的快速发展,锂离子电池将不可避免地面临有限的能量密度无法满足日益增长的需求和成本不断上升的两大困境。室温钠-硫电池因具有高能量密度和低成本的优势而备受关注,但其存在多硫化钠的“穿梭效应”导致电池的循环性能较差的问题,亟需解决。在此,本文提出将纳米TiO_(2)颗粒构筑于多通道炭纤维以稳定硫,从而实现室温钠-硫电池电化学性能的提高。首先通过静电纺丝和热处理技术制得有纳米TiO_(2)负载的多通道炭纤维载体材料,后续采用熔融扩散载硫方法制备出硫基复合正极材料。纳米TiO_(2)颗粒的加入可增强了对多硫化物的吸附力,同时促进其向Na2S2和Na2S的快速转化。在0.1 A g^(−1)电流密度条件下,电极材料经循环100次后的比容量为445.1 mAh g^(−1),库仑效率接近100%;即使在电流密度为2 A g^(−1)时,经500次循环,该电极材料仍保持有300.5 mAh g^(−1)的容量,显现出优异的倍率和循环性能。通过表征测试手段与理论计算相结合,验证了纳米TiO_(2)颗粒的加入可增强碳基材料对多硫化物的吸附作用。这项工作有望为高性能室温钠-硫电池正极材料的优化设计提供理论依据与技术指导。展开更多
本文采用改性的中和反应和随后的热处理方法制备了较大产量的超级电容器用无定形水合二氧化钌材料(RuO2·0.93H2O),同时,制作了电极进行了电化学性能表征。实验中,以自制的喷雾装置和十二烷基磺酸钠(SDS)分别作为反应辅助技...本文采用改性的中和反应和随后的热处理方法制备了较大产量的超级电容器用无定形水合二氧化钌材料(RuO2·0.93H2O),同时,制作了电极进行了电化学性能表征。实验中,以自制的喷雾装置和十二烷基磺酸钠(SDS)分别作为反应辅助技术和表面分散剂。经175℃处理前驱体后,实验获得了比表面积为223m2/g、蓬松状、深黑色无定形水合二氧化钌材料。研究了以Nafion为粘结剂和以碳纤维纸为集流体所制备电极的电化学性能。循环伏安实验(CV)结果表明,该合成材料具有较好的比电容(988F/g at 1mV/s)和倍率特性;电化学交流阻抗(EIS)实验进一步证明了该材料具有较低的等效串联内阻(~30mΩ)和频率响应特性。合成材料有望在国防及民用领域超级电容器中得到规模化应用。展开更多
文摘随着电动汽车和大规模储能电网的快速发展,锂离子电池将不可避免地面临有限的能量密度无法满足日益增长的需求和成本不断上升的两大困境。室温钠-硫电池因具有高能量密度和低成本的优势而备受关注,但其存在多硫化钠的“穿梭效应”导致电池的循环性能较差的问题,亟需解决。在此,本文提出将纳米TiO_(2)颗粒构筑于多通道炭纤维以稳定硫,从而实现室温钠-硫电池电化学性能的提高。首先通过静电纺丝和热处理技术制得有纳米TiO_(2)负载的多通道炭纤维载体材料,后续采用熔融扩散载硫方法制备出硫基复合正极材料。纳米TiO_(2)颗粒的加入可增强了对多硫化物的吸附力,同时促进其向Na2S2和Na2S的快速转化。在0.1 A g^(−1)电流密度条件下,电极材料经循环100次后的比容量为445.1 mAh g^(−1),库仑效率接近100%;即使在电流密度为2 A g^(−1)时,经500次循环,该电极材料仍保持有300.5 mAh g^(−1)的容量,显现出优异的倍率和循环性能。通过表征测试手段与理论计算相结合,验证了纳米TiO_(2)颗粒的加入可增强碳基材料对多硫化物的吸附作用。这项工作有望为高性能室温钠-硫电池正极材料的优化设计提供理论依据与技术指导。
文摘本文采用改性的中和反应和随后的热处理方法制备了较大产量的超级电容器用无定形水合二氧化钌材料(RuO2·0.93H2O),同时,制作了电极进行了电化学性能表征。实验中,以自制的喷雾装置和十二烷基磺酸钠(SDS)分别作为反应辅助技术和表面分散剂。经175℃处理前驱体后,实验获得了比表面积为223m2/g、蓬松状、深黑色无定形水合二氧化钌材料。研究了以Nafion为粘结剂和以碳纤维纸为集流体所制备电极的电化学性能。循环伏安实验(CV)结果表明,该合成材料具有较好的比电容(988F/g at 1mV/s)和倍率特性;电化学交流阻抗(EIS)实验进一步证明了该材料具有较低的等效串联内阻(~30mΩ)和频率响应特性。合成材料有望在国防及民用领域超级电容器中得到规模化应用。