The stability of Ti2AlN at high pressure of 5 GPa and different temperatures of 700-1 600 ℃ was investigated using X-ray diffraction (XRD),scanning electron microscopy (SEM) equipped with an energy dispersive spe...The stability of Ti2AlN at high pressure of 5 GPa and different temperatures of 700-1 600 ℃ was investigated using X-ray diffraction (XRD),scanning electron microscopy (SEM) equipped with an energy dispersive spectrometer (EDS).Ti2AlN was found to be stable at temperatures as high as 1 400 ℃under 5 GPa for 20 min,and was proved that it held better structure stability than Ti2AlC under 5 GPa through comparative experiments of Ti2AlN and Ti2AlC (representative compounds of M2AX phases (211 phase)).The reaction process at high pressure had some difference from that at ambient pressure/vacuum,and Ti2AlN directly decomposed to TiN and TiAl at 5 GPa and 1 500 ℃ for 20 min.Moreover,the mechanism of phase segregation was discussed.In addition,the behavior of Ti2AlN contacting with Zr at high pressure and high temperature (HPHT) was also studied.展开更多
基金Funded by the National Natural Science Foundation of China (Nos.50572067,10772126)
文摘The stability of Ti2AlN at high pressure of 5 GPa and different temperatures of 700-1 600 ℃ was investigated using X-ray diffraction (XRD),scanning electron microscopy (SEM) equipped with an energy dispersive spectrometer (EDS).Ti2AlN was found to be stable at temperatures as high as 1 400 ℃under 5 GPa for 20 min,and was proved that it held better structure stability than Ti2AlC under 5 GPa through comparative experiments of Ti2AlN and Ti2AlC (representative compounds of M2AX phases (211 phase)).The reaction process at high pressure had some difference from that at ambient pressure/vacuum,and Ti2AlN directly decomposed to TiN and TiAl at 5 GPa and 1 500 ℃ for 20 min.Moreover,the mechanism of phase segregation was discussed.In addition,the behavior of Ti2AlN contacting with Zr at high pressure and high temperature (HPHT) was also studied.