期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
动态卷积生成对抗网络的视频帧预测方法研究 被引量:2
1
作者 安利智 何平 +2 位作者 张薇 石钰阳 田宇 《小型微型计算机系统》 CSCD 北大核心 2022年第2期278-284,共7页
针对当前视频帧预测模型中存在的预测准确度较差和物体结构信息丢失等问题,提出了一种动态卷积生成对抗网络.在生成网络中,首先使用卷积长短时记忆网络初步提取输入视频流的图像特征,然后利用卷积神经动态平流单元对视频流中的运动特征... 针对当前视频帧预测模型中存在的预测准确度较差和物体结构信息丢失等问题,提出了一种动态卷积生成对抗网络.在生成网络中,首先使用卷积长短时记忆网络初步提取输入视频流的图像特征,然后利用卷积神经动态平流单元对视频流中的运动特征进行提取,最后将上述两种特征组合后输出一组预测视频帧;在判别网络中,采用一个3D卷积网络一次性接收全部视频帧.在实验中,使用Adam方法优化模型的参数,采用KTH和BAIR Robot Pushing数据集作为训练数据集.实验结果表明:无论是在长时间视频帧预测准确度和物体结构信息保留方面,还是人眼的主观感受上,动态卷积生成对抗网络均优于变分生成对抗网络,其在结构相似性度量指标下提高了14.5%,在学习感知图像块相似性指标下提高了7.69%,并且生成的预测视频更加流畅,具有更高的实用价值. 展开更多
关键词 视频帧预测 卷积动态神经平流单元 生成对抗网络 变分生成对抗网络
下载PDF
基于PSO-SVM模型的多区域多参数MRI脑胶质瘤MGMT分类 被引量:1
2
作者 石钰阳 何平 +2 位作者 刘奕 安利智 田宇 《科学技术创新》 2021年第17期15-18,共4页
目的:探讨基于粒子群优化支持向量机(PSO-SVM)模型的多区域多参数MRI放射组学特征预测脑胶质瘤O6-甲基鸟嘌呤-DNA甲基转移酶(MGMT)启动子甲基化状态。方法:首先分析了127例脑胶质瘤患者的MR影像资料,从肿瘤及水肿区T1WI增强、T2WI、FLAI... 目的:探讨基于粒子群优化支持向量机(PSO-SVM)模型的多区域多参数MRI放射组学特征预测脑胶质瘤O6-甲基鸟嘌呤-DNA甲基转移酶(MGMT)启动子甲基化状态。方法:首先分析了127例脑胶质瘤患者的MR影像资料,从肿瘤及水肿区T1WI增强、T2WI、FLAIR和ADC序列中提取1029个放射组学特征,包括一阶统计量、形状和纹理特征;然后采用主成分分析法(PCA)对提取的特征降维,结合PSO-SVM算法建立放射组学模型训练学习;最后采用受试者操作特性(ROC)曲线和准确率评价模型预测效能。结果:基于PSO-SVM模型的多区域多参数MRI脑胶质瘤MGMT分类实验中,肿瘤区情况最好的是T1WI增强序列,预测脑胶质瘤MGMT启动子甲基化状态AUC为0.88,准确率达90%;水肿区情况最好的是ADC序列,AUC为0.90,测试集全部预测正确。结论:模型具有训练速度快、精确度高的特点,可以快速预测MGMT病理结果,为医生提供一种高效而准确的辅助诊断依据。 展开更多
关键词 脑胶质瘤 MGMT甲基化 支持向量机 PSO-SVM模型 核磁共振图像
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部