A series of CeO2‐MnOx‐Al2O3 mixed oxide catalysts (Ce:Mn:Al mole ratio=6:4:x, x=0.25, 0.5, 1, 2) were prepared by a simple one‐step inverse co‐precipitation method to investigate the influence of the incorpo...A series of CeO2‐MnOx‐Al2O3 mixed oxide catalysts (Ce:Mn:Al mole ratio=6:4:x, x=0.25, 0.5, 1, 2) were prepared by a simple one‐step inverse co‐precipitation method to investigate the influence of the incorporation of Al3+ into CeO2‐MnOx mixed oxides. CeO2‐MnOx, CeO2‐Al2O3, and MnOx‐Al2O3 mixed oxides, and CeO2 were prepared by the same method for comparison. The samples were characterized by XRD, Raman, N2 physisorption, H2‐TPR, XPS, and in situ DRIFTS. The catalytic re‐duction of NO by CO was chosen as a model reaction to evaluate the catalytic performance. The incorporation of a small amount of Al3+into CeO2‐MnOx mixed oxides resulted in a decrease of crys‐tallite size, with the increase of the BET specific surface area and pore volume, as well as the in‐crease of Ce3+and Mn4+. The former benefits good contact between catalyst and reactants, and the latter promotes the adsorption of CO and the desorption, conversion and dissociation of adsorbed NO. All these enhanced the catalytic performance for the NO+CO model reaction. A reaction mecha‐nism was proposed to explain the excellent catalytic performance of CeO2‐MnOx‐Al2O3 catalysts for NO reduction by CO.展开更多
This work examines the influence of preparation methods on the physicochemical properties and catalytic performance of MnOx‐CeO2 catalysts for selective catalytic reduction of NO by NH3 (NH3‐SCR) at low temperature....This work examines the influence of preparation methods on the physicochemical properties and catalytic performance of MnOx‐CeO2 catalysts for selective catalytic reduction of NO by NH3 (NH3‐SCR) at low temperature. Five different methods, namely, mechanical mixing, impregnation,hydrothermal treatment, co‐precipitation, and a sol‐gel technique, were used to synthesizeMnOx‐CeO2 catalysts. The catalysts were characterized in detail, and an NH3‐SCR model reaction waschosen to evaluate the catalytic performance. The results showed that the preparation methodsaffected the catalytic performance in the order: hydrothermal treatment > sol‐gel > co‐precipitation> impregnation > mechanical mixing. This order correlated with the surface Ce3+ and Mn4+ content,oxygen vacancies and surface adsorbed oxygen species concentration, and the amount of acidic sitesand acidic strength. This trend is related to redox interactions between MnOx and CeO2. The catalystformed by a hydrothermal treatment exhibited excellent physicochemical properties, optimal catalyticperformance, and good H2O resistance in NH3‐SCR reaction. This was attributed to incorporationof Mnn+ into the CeO2 lattice to form a uniform ceria‐based solid solution (containing Mn‐O‐Cestructures). Strengthening of the electronic interactions between MnOx and CeO2, driven by thehigh‐temperature and high‐pressure conditions during the hydrothermal treatment also improved the catalyst characteristics. Thus, the hydrothermal treatment method is an efficient and environment‐friendly route to synthesizing low‐temperature denitrification (deNOx) catalysts.展开更多
基金supported by the National Natural Science Foundation of China (21507130)the Open Project Program of Chongqing Key Laboratory of Environmental Materials and Remediation Technology from Chongqing University of Arts and Sciences (CEK1405)+3 种基金the Open Project Program of Beijing National Laboratory for Molecular Sciences (20140142)the Open Project Program of Jiangsu Key Laboratory of Vehicle Emissions Control (OVEC001)the Open Project Program of Chongqing Key Laboratory of Catalysis and Functional Organic Molecules from Chongqing Technology and Business University (1456029)the Chongqing Science & Technology Commission (cstc2014pt-gc20002)~~
文摘A series of CeO2‐MnOx‐Al2O3 mixed oxide catalysts (Ce:Mn:Al mole ratio=6:4:x, x=0.25, 0.5, 1, 2) were prepared by a simple one‐step inverse co‐precipitation method to investigate the influence of the incorporation of Al3+ into CeO2‐MnOx mixed oxides. CeO2‐MnOx, CeO2‐Al2O3, and MnOx‐Al2O3 mixed oxides, and CeO2 were prepared by the same method for comparison. The samples were characterized by XRD, Raman, N2 physisorption, H2‐TPR, XPS, and in situ DRIFTS. The catalytic re‐duction of NO by CO was chosen as a model reaction to evaluate the catalytic performance. The incorporation of a small amount of Al3+into CeO2‐MnOx mixed oxides resulted in a decrease of crys‐tallite size, with the increase of the BET specific surface area and pore volume, as well as the in‐crease of Ce3+and Mn4+. The former benefits good contact between catalyst and reactants, and the latter promotes the adsorption of CO and the desorption, conversion and dissociation of adsorbed NO. All these enhanced the catalytic performance for the NO+CO model reaction. A reaction mecha‐nism was proposed to explain the excellent catalytic performance of CeO2‐MnOx‐Al2O3 catalysts for NO reduction by CO.
基金supported by the National Natural Science Foundation of China (No. 21507130)the Open Project Program of Beijing National Laboratory for Molecular Sciences (No. 20140142)+3 种基金the Open Project Program of Chongqing Key Laboratory of Environmental Materials and Remediation Technology from Chongqing University of Arts and Sciences (No. CEK1405)the Open Project Program of Jiangsu Key Laboratory of Vehicle Emissions Control (No. OVEC001)the Open Project Program of Chongqing Key Laboratory of Catalysis and Functional Organic Molecules from Chongqing Technology and Business University (1456029)the Chongqing Science & Technology Commission (Nos. cstc2016jcyj A0070, cstc2014pt-gc20002, cstckjcxljrc13)~~
文摘This work examines the influence of preparation methods on the physicochemical properties and catalytic performance of MnOx‐CeO2 catalysts for selective catalytic reduction of NO by NH3 (NH3‐SCR) at low temperature. Five different methods, namely, mechanical mixing, impregnation,hydrothermal treatment, co‐precipitation, and a sol‐gel technique, were used to synthesizeMnOx‐CeO2 catalysts. The catalysts were characterized in detail, and an NH3‐SCR model reaction waschosen to evaluate the catalytic performance. The results showed that the preparation methodsaffected the catalytic performance in the order: hydrothermal treatment > sol‐gel > co‐precipitation> impregnation > mechanical mixing. This order correlated with the surface Ce3+ and Mn4+ content,oxygen vacancies and surface adsorbed oxygen species concentration, and the amount of acidic sitesand acidic strength. This trend is related to redox interactions between MnOx and CeO2. The catalystformed by a hydrothermal treatment exhibited excellent physicochemical properties, optimal catalyticperformance, and good H2O resistance in NH3‐SCR reaction. This was attributed to incorporationof Mnn+ into the CeO2 lattice to form a uniform ceria‐based solid solution (containing Mn‐O‐Cestructures). Strengthening of the electronic interactions between MnOx and CeO2, driven by thehigh‐temperature and high‐pressure conditions during the hydrothermal treatment also improved the catalyst characteristics. Thus, the hydrothermal treatment method is an efficient and environment‐friendly route to synthesizing low‐temperature denitrification (deNOx) catalysts.