Li-ion hybrid supercapacitors (Li-HECs) facilitate effective combination of the advantages of supercapacitors and Li-ion batteries (LIBs). However, challenges remain in designing and preparing suitable anode and c...Li-ion hybrid supercapacitors (Li-HECs) facilitate effective combination of the advantages of supercapacitors and Li-ion batteries (LIBs). However, challenges remain in designing and preparing suitable anode and cathode materials, which often require tedious and expensive procedures. Herein, we demonstrated that hollow N-doped carbon capsules (HNC) with and without a Fe304 nanoparticle core can respectively function as the anode and the cathode in very-high-performance Li-HECs. The Fe3Oa@NC anode exhibited a high reversible specific capacity exceeding 1530 mA h g^-1 at 100 mA g^-1 and excellent rate capability (45% capacity retention from 0.1 to 5 A g^-1) and cycle stability (〉97% retention after 100 cycles). Moreover, high rate performance was achieved in a full-cell using the HNC cathode. By combining the respective structural advantages of the components, the hybrid device with Fe3Oa@NC//HN C exhibited a remark- able energy density of 185 W h kg^-1 at a power density of 39 W kg^-1. The hybrid device furnished a battery-inaccessible power density of 28 kW kg^-1 with rapid charging/discharging within 9 s at an energy density of 95 W h kg^-1.展开更多
As typical high-capacity complex hydrides,lightweight hydrides have attracted intensive attention due to their high gravimetric and volumetric energy densities of hydrogen storage.However,lightweight hydrides also hav...As typical high-capacity complex hydrides,lightweight hydrides have attracted intensive attention due to their high gravimetric and volumetric energy densities of hydrogen storage.However,lightweight hydrides also have high thermodynamic stability and poor kinetics,so they ususally require high hydrogen desorption temperature and show inferior reversibility under mild conditions.This review summarizes recent progresses on the endeavor of overcoming thermodynamic and kinetic challenges for Mg based hydrides,lightweight metal borohydrides and alanates.First,the current state,advantages and challenges for Mg-based hydrides and lightweight metal hydrides are introduced.Then,alloying,nanoscaling and appropriate doping techniques are demonstrated to decrease the hydrogen desorption temperature and promote the reversibility behavior in lightweight hydrides.Selected scaffolds materials,approaches for synthesis of nanoconfined systems and hydriding-dehydriding properties are reviewed.In addition,the evolution of various dopants and their effects on the hydrogen storage properties of lightweight hydrides are investigated,and the relevant catalytic mechanisms are summarized.Finally,the remaining challenges and the sustainable research efforts are discussed.展开更多
基金supported by the Science and Technology Project of Hebei Education Department (Grant No.JZX20230004)National Natural Science Fund of China (Grant No.12172118)+1 种基金Research Program of Local Science and Technology Development under the guidance of Central China (Grant No.216Z4402G)Open Project of the Chongqing Key Laboratory of Green (Grant No.GATRI2021F01005B).
基金supported by the National Natural Science Foundation of China (51601127, 21603162 and 51671145)China Post-doctoral Science Fund (2015M581304)+1 种基金Tianjin Municipal Education Commission, Tianjin Municipal Science and Technology Commission (16ZXCLGX00120)the Fundamental Research Funds of Tianjin University of Technology
文摘Li-ion hybrid supercapacitors (Li-HECs) facilitate effective combination of the advantages of supercapacitors and Li-ion batteries (LIBs). However, challenges remain in designing and preparing suitable anode and cathode materials, which often require tedious and expensive procedures. Herein, we demonstrated that hollow N-doped carbon capsules (HNC) with and without a Fe304 nanoparticle core can respectively function as the anode and the cathode in very-high-performance Li-HECs. The Fe3Oa@NC anode exhibited a high reversible specific capacity exceeding 1530 mA h g^-1 at 100 mA g^-1 and excellent rate capability (45% capacity retention from 0.1 to 5 A g^-1) and cycle stability (〉97% retention after 100 cycles). Moreover, high rate performance was achieved in a full-cell using the HNC cathode. By combining the respective structural advantages of the components, the hybrid device with Fe3Oa@NC//HN C exhibited a remark- able energy density of 185 W h kg^-1 at a power density of 39 W kg^-1. The hybrid device furnished a battery-inaccessible power density of 28 kW kg^-1 with rapid charging/discharging within 9 s at an energy density of 95 W h kg^-1.
基金supported by the National Key R&D Program of China (2018YFB1502102)the National Natural Science Foundation of China (51571124, 51571125, 51871123 and 51501072)+1 种基金111 Project (B12015)MOE (IRT13R30)
文摘As typical high-capacity complex hydrides,lightweight hydrides have attracted intensive attention due to their high gravimetric and volumetric energy densities of hydrogen storage.However,lightweight hydrides also have high thermodynamic stability and poor kinetics,so they ususally require high hydrogen desorption temperature and show inferior reversibility under mild conditions.This review summarizes recent progresses on the endeavor of overcoming thermodynamic and kinetic challenges for Mg based hydrides,lightweight metal borohydrides and alanates.First,the current state,advantages and challenges for Mg-based hydrides and lightweight metal hydrides are introduced.Then,alloying,nanoscaling and appropriate doping techniques are demonstrated to decrease the hydrogen desorption temperature and promote the reversibility behavior in lightweight hydrides.Selected scaffolds materials,approaches for synthesis of nanoconfined systems and hydriding-dehydriding properties are reviewed.In addition,the evolution of various dopants and their effects on the hydrogen storage properties of lightweight hydrides are investigated,and the relevant catalytic mechanisms are summarized.Finally,the remaining challenges and the sustainable research efforts are discussed.