期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于WOA-LSTM的锂电池寿命预测研究
1
作者
霍琳
宋云琦
+1 位作者
盖迪
徐海
《兵器装备工程学报》
CAS
CSCD
北大核心
2024年第S01期223-230,共8页
针对LSTM模型参数较难选取导致锂电池寿命预测效果较差,提出一种长短期记忆神经网络(LSTM)结合鲸鱼优化算法(WOA)的锂电池产品寿命预测方法,该方法通过WOA对参数进行优化以提高模型的准确性。在此基础上,采用NASA锂电池数据集进行对比...
针对LSTM模型参数较难选取导致锂电池寿命预测效果较差,提出一种长短期记忆神经网络(LSTM)结合鲸鱼优化算法(WOA)的锂电池产品寿命预测方法,该方法通过WOA对参数进行优化以提高模型的准确性。在此基础上,采用NASA锂电池数据集进行对比实验分析,分别运用WOA-LSTM算法、CNN-LSTM算法和LSTM算法对锂电池的剩余使用寿命进行预测,实验结果证明,WOA-LSTM模型相较于CNN-LSTM模型和LSTM模型的精度分别提升了3.2%和4.5%,验证了WOA方法的有效性,为推动锂电池相关研究的进展提供思路和依据。
展开更多
关键词
锂电池
剩余使用寿命
长短期记忆神经网络
鲸鱼优化算法
下载PDF
职称材料
题名
基于WOA-LSTM的锂电池寿命预测研究
1
作者
霍琳
宋云琦
盖迪
徐海
机构
沈阳航空航天大学
中国民用航空沈阳航空器适航审定中心
出处
《兵器装备工程学报》
CAS
CSCD
北大核心
2024年第S01期223-230,共8页
文摘
针对LSTM模型参数较难选取导致锂电池寿命预测效果较差,提出一种长短期记忆神经网络(LSTM)结合鲸鱼优化算法(WOA)的锂电池产品寿命预测方法,该方法通过WOA对参数进行优化以提高模型的准确性。在此基础上,采用NASA锂电池数据集进行对比实验分析,分别运用WOA-LSTM算法、CNN-LSTM算法和LSTM算法对锂电池的剩余使用寿命进行预测,实验结果证明,WOA-LSTM模型相较于CNN-LSTM模型和LSTM模型的精度分别提升了3.2%和4.5%,验证了WOA方法的有效性,为推动锂电池相关研究的进展提供思路和依据。
关键词
锂电池
剩余使用寿命
长短期记忆神经网络
鲸鱼优化算法
Keywords
lithium battery
remaining useful life
long short-term memory neural networks
whale optimization algorithm
分类号
TM912.9 [电气工程—电力电子与电力传动]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于WOA-LSTM的锂电池寿命预测研究
霍琳
宋云琦
盖迪
徐海
《兵器装备工程学报》
CAS
CSCD
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部