期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于IGWO-MKELM的锂离子电池剩余使用寿命预测
被引量:
1
1
作者
宋健正
刘洋
+1 位作者
崔来熙
张梦迪
《电源学报》
CSCD
北大核心
2023年第1期168-176,共9页
随着锂离子电池在储能系统中比例迅速增大,为避免因电池性能退化导致的事故,如何准确预测锂离子电池剩余使用寿命就成为保障储能系统可靠运行的关键。针对锂离子电池剩余使用寿命预测的问题,提出一种改进灰狼优化多核极限学习机(IGWO-MK...
随着锂离子电池在储能系统中比例迅速增大,为避免因电池性能退化导致的事故,如何准确预测锂离子电池剩余使用寿命就成为保障储能系统可靠运行的关键。针对锂离子电池剩余使用寿命预测的问题,提出一种改进灰狼优化多核极限学习机(IGWO-MKELM)预测方法。首先从电池充放电过程中提取能够表征电池寿命退化的间接健康因子作为输入量,然后采用改进灰狼算法对多核极限学习机参数进行寻优,建立改进灰狼优化多核极限学习机预测方法,最后使用NASA电池数据集进行仿真实验。结果表明,IGWO-MKELM方法可以更加精确地预测锂离子电池剩余寿命。
展开更多
关键词
锂离子电池
剩余使用寿命
间接健康因子
改进灰狼优化算法
多核极限学习机
下载PDF
职称材料
题名
基于IGWO-MKELM的锂离子电池剩余使用寿命预测
被引量:
1
1
作者
宋健正
刘洋
崔来熙
张梦迪
机构
山东理工大学电气与电子工程学院
出处
《电源学报》
CSCD
北大核心
2023年第1期168-176,共9页
基金
国家重点研发计划资助项目(2017YFB0902800)
山东省研究生教育教学改革研究项目(SDYJG19103)
国家电网有限公司科技项目(52094017003D)。
文摘
随着锂离子电池在储能系统中比例迅速增大,为避免因电池性能退化导致的事故,如何准确预测锂离子电池剩余使用寿命就成为保障储能系统可靠运行的关键。针对锂离子电池剩余使用寿命预测的问题,提出一种改进灰狼优化多核极限学习机(IGWO-MKELM)预测方法。首先从电池充放电过程中提取能够表征电池寿命退化的间接健康因子作为输入量,然后采用改进灰狼算法对多核极限学习机参数进行寻优,建立改进灰狼优化多核极限学习机预测方法,最后使用NASA电池数据集进行仿真实验。结果表明,IGWO-MKELM方法可以更加精确地预测锂离子电池剩余寿命。
关键词
锂离子电池
剩余使用寿命
间接健康因子
改进灰狼优化算法
多核极限学习机
Keywords
lithium-ion battery
remaining useful life(RUL)
indirect health factors
improved grey wolf optimization(IGWO)algorithm
multiple kernel extreme learning machine(MKELM)
分类号
TM912 [电气工程—电力电子与电力传动]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于IGWO-MKELM的锂离子电池剩余使用寿命预测
宋健正
刘洋
崔来熙
张梦迪
《电源学报》
CSCD
北大核心
2023
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部