面向模糊推理的FMT(Fuzzy Modus Tollens)问题,从对称蕴涵的角度,将三I*算法推广为对称I*算法.首先,给出了FMT-对称I*算法的定义、求解原则,针对R-蕴涵算子构建了一致化表达的求解模式;针对几个常见的R-蕴涵算子,提供了具体的优化解形式...面向模糊推理的FMT(Fuzzy Modus Tollens)问题,从对称蕴涵的角度,将三I*算法推广为对称I*算法.首先,给出了FMT-对称I*算法的定义、求解原则,针对R-蕴涵算子构建了一致化表达的求解模式;针对几个常见的R-蕴涵算子,提供了具体的优化解形式.进一步地,将FMT-对称I*算法衍生到α-FMT-对称I*算法的范畴,探讨了α-FMT-对称I*算法的定义、求解原理和优化解.最后,考察了FMT-对称I*算法的置换还原性,发现其效果良好.展开更多
文摘面向模糊推理的FMT(Fuzzy Modus Tollens)问题,从对称蕴涵的角度,将三I*算法推广为对称I*算法.首先,给出了FMT-对称I*算法的定义、求解原则,针对R-蕴涵算子构建了一致化表达的求解模式;针对几个常见的R-蕴涵算子,提供了具体的优化解形式.进一步地,将FMT-对称I*算法衍生到α-FMT-对称I*算法的范畴,探讨了α-FMT-对称I*算法的定义、求解原理和优化解.最后,考察了FMT-对称I*算法的置换还原性,发现其效果良好.