期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于中层特征的细粒度的车型识别 被引量:2
1
作者 宋岩贝 魏维 何冰倩 《计算机工程与设计》 北大核心 2020年第6期1708-1713,共6页
为提高细粒度车型识别的准确率,提升智能停车场、智能交通监管系统的可靠性,针对低层特征在车型识别中精确不高的问题,提出一种基于中层特征的细粒度分类算法。其核心是使用筛选算法筛选中层特征,使得筛选后特征具有较高的表示性,提高... 为提高细粒度车型识别的准确率,提升智能停车场、智能交通监管系统的可靠性,针对低层特征在车型识别中精确不高的问题,提出一种基于中层特征的细粒度分类算法。其核心是使用筛选算法筛选中层特征,使得筛选后特征具有较高的表示性,提高识别的准确率。使用Adaboost算法进行车脸定位,减少后期的计算量,去除干扰因素。该算法无需GPU等计算资源,方便部署。与BOW、SPM、CNN等通用的分类模型相比,其准确率有较大提升。在大众数据集中的实验结果表明,其平均准确率为95.65%,平均耗时为0.82 s。 展开更多
关键词 车型识别 词包算法 图像分类 细粒度分类 中层特征
下载PDF
基于时空域深度神经网络的野火视频烟雾检测 被引量:4
2
作者 张斌 魏维 +2 位作者 高联欣 宋岩贝 李佳欣 《计算机应用与软件》 北大核心 2019年第9期236-242,259,共8页
针对目前的烟雾检测算法主要基于单一特征或烟雾的多个动静态特征的融合导致检测精度低的问题,提出一种使用卷积神经网络和循环神经网络组合的视频烟雾检测框架来捕获烟雾在空间域和时间域中的特征信息。利用空间流网络部分对运动区域... 针对目前的烟雾检测算法主要基于单一特征或烟雾的多个动静态特征的融合导致检测精度低的问题,提出一种使用卷积神经网络和循环神经网络组合的视频烟雾检测框架来捕获烟雾在空间域和时间域中的特征信息。利用空间流网络部分对运动区域自动提取特征后进行初步的空域的判别;在将空域判断为有烟的基础上进一步通过时间流网络和循环神经网络部分累积一组连续帧之间的运动信息以区分烟雾和非烟雾区域。与现有的使用深度卷积神经网络模型进行对比实验,实验结果表明,该方法具有较高的分类检测准确率。在多个视频场景中进行测试,验证了该算法的有效性。 展开更多
关键词 卷积神经网络 循环神经网络 时空域特征 烟雾检测
下载PDF
融合时空兴趣点和多元广义高斯混合模型的人体动作识别 被引量:3
3
作者 何冰倩 魏维 +2 位作者 宋岩贝 高联欣 张斌 《成都信息工程大学学报》 2019年第4期358-364,共7页
人体动作识别近年作为计算机视觉领域的热点研究方向,被广泛用于人机交互、虚拟现实等领域。针对传统人体动作识别算法中提取特征时冗余点过多、忽略图像数据的关联性等问题,提出一种融合时空兴趣点和结合定点估计的多元广义高斯混合模... 人体动作识别近年作为计算机视觉领域的热点研究方向,被广泛用于人机交互、虚拟现实等领域。针对传统人体动作识别算法中提取特征时冗余点过多、忽略图像数据的关联性等问题,提出一种融合时空兴趣点和结合定点估计的多元广义高斯混合模型(MGGMMs)的人体动作识别方法,通过过滤冗余特征点和利用多元广义高斯混合模型实现了特征点的有效提取以及对数据关联性的充分利用。以改进的Harris-Laplace算法和3D-SIFT描述子提取视频序列的特征点,利用BOW模型进行视觉词聚类,最后通过改进的多元广义高斯混合模型进行建模和分类。在KTH公开数据集上进行实验,实验结果表明提出的人体动作识别方法能够对视频中人体动作进行有效识别和分类。 展开更多
关键词 动作识别 时空兴趣点 HARRIS-LAPLACE MGGMMs 特征提取
下载PDF
基于改进的深度神经网络的人体动作识别模型 被引量:4
4
作者 何冰倩 魏维 +2 位作者 张斌 高联欣 宋岩贝 《计算机应用研究》 CSCD 北大核心 2019年第10期3107-3111,共5页
针对现有人体动作识别方法需输入固定长度的视频段、未充分利用时空信息等问题,提出一种基于时空金字塔和注意力机制相结合的深度神经网络模型,将包含时空金字塔的3D-CNN和添加时空注意力机制的LSTM模型相结合,实现了对视频段的多尺度... 针对现有人体动作识别方法需输入固定长度的视频段、未充分利用时空信息等问题,提出一种基于时空金字塔和注意力机制相结合的深度神经网络模型,将包含时空金字塔的3D-CNN和添加时空注意力机制的LSTM模型相结合,实现了对视频段的多尺度处理和对动作的复杂时空信息的充分利用。以RGB图像和光流场作为空域和时域的输入,以融合金字塔池化层的运动和外观特征后的融合特征作为融合域的输入,最后采用决策融合策略获得最终动作识别结果。在UCF101和HMDB51数据集上进行实验,分别取得了94.2%和70.5%的识别准确率。实验结果表明,改进的网络模型在基于视频的人体动作识别任务上获得了较高的识别准确率。 展开更多
关键词 动作识别 深度学习 时空金字塔 注意力机制 卷积神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部