针对遥感图像目标检测任务中存在的目标尺度差异大、检测精度低等问题,提出了一种基于加权策略的改进YOLOv3遥感图像目标检测模型。为提高对遥感图像中小目标的检测精度,增加具有较小感受野的特征图像的检测分支。设计了一种多尺度特征...针对遥感图像目标检测任务中存在的目标尺度差异大、检测精度低等问题,提出了一种基于加权策略的改进YOLOv3遥感图像目标检测模型。为提高对遥感图像中小目标的检测精度,增加具有较小感受野的特征图像的检测分支。设计了一种多尺度特征图像自适应加权融合方法,通过挖掘特征提取网络的表征能力,综合利用多尺度特征提高了目标检测精度。采用DIOR数据集的4类目标构建了一个新的遥感图像目标检测数据集,并进行了改进模型的训练与测试。实验结果表明,改进后的模型取得了80.25%的平均精度均值(mean Average Precision,mAP),相比于改进前提高了8.2%。将训练模型对RSOD、UCAS-AOD、NWPU VHR-10数据集进行测试,验证了改进模型具有较好的适应性。展开更多
文摘针对遥感图像目标检测任务中存在的目标尺度差异大、检测精度低等问题,提出了一种基于加权策略的改进YOLOv3遥感图像目标检测模型。为提高对遥感图像中小目标的检测精度,增加具有较小感受野的特征图像的检测分支。设计了一种多尺度特征图像自适应加权融合方法,通过挖掘特征提取网络的表征能力,综合利用多尺度特征提高了目标检测精度。采用DIOR数据集的4类目标构建了一个新的遥感图像目标检测数据集,并进行了改进模型的训练与测试。实验结果表明,改进后的模型取得了80.25%的平均精度均值(mean Average Precision,mAP),相比于改进前提高了8.2%。将训练模型对RSOD、UCAS-AOD、NWPU VHR-10数据集进行测试,验证了改进模型具有较好的适应性。