期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多子空间加权移动窗主成分分析的全厂流程早期故障检测
1
作者
宋易盟
宋冰
+1 位作者
侍洪波
康永波
《浙江大学学报(工学版)》
EI
CAS
CSCD
北大核心
2024年第10期2076-2083,共8页
早期故障的特征不明显,在全厂流程中比常规故障难检测.为了提高全厂流程中早期故障的检测率和灵敏度,将检测视角由全局转移至局部,提出基于多子空间加权移动窗主成分分析(PCA)的早期故障检测方法.使用结合过程知识和数据驱动的双层子空...
早期故障的特征不明显,在全厂流程中比常规故障难检测.为了提高全厂流程中早期故障的检测率和灵敏度,将检测视角由全局转移至局部,提出基于多子空间加权移动窗主成分分析(PCA)的早期故障检测方法.使用结合过程知识和数据驱动的双层子空间划分方法,将过程变量划分到不同子空间中.使用加权的移动窗口增大早期故障的偏移量,将局部离群因子(LOF)算法引入PCA,以便进一步关注数据的局部特征,在每个子空间中建立故障检测模型.通过贝叶斯推理融合法对各子空间的监测结果进行信息融合,获得分布式监测结果.通过工业实例验证所提方法的性能.结果表明,所提方法在全厂流程中有效提升了早期故障检测的准确率和灵敏度.
展开更多
关键词
全厂流程
早期故障检测
两层子空间划分
加权移动窗口
局部离群因子
贝叶斯推理融合
下载PDF
职称材料
题名
基于多子空间加权移动窗主成分分析的全厂流程早期故障检测
1
作者
宋易盟
宋冰
侍洪波
康永波
机构
华东理工大学能源化工过程智能制造教育部重点实验室
出处
《浙江大学学报(工学版)》
EI
CAS
CSCD
北大核心
2024年第10期2076-2083,共8页
基金
国家自然科学基金资助项目(62073140,62073141,62103149,62273147)
上海明日之星计划资助项目(21QA1401800)
国家重点研发计划资助项目(2020YFC1522502,2020YFC1522505).
文摘
早期故障的特征不明显,在全厂流程中比常规故障难检测.为了提高全厂流程中早期故障的检测率和灵敏度,将检测视角由全局转移至局部,提出基于多子空间加权移动窗主成分分析(PCA)的早期故障检测方法.使用结合过程知识和数据驱动的双层子空间划分方法,将过程变量划分到不同子空间中.使用加权的移动窗口增大早期故障的偏移量,将局部离群因子(LOF)算法引入PCA,以便进一步关注数据的局部特征,在每个子空间中建立故障检测模型.通过贝叶斯推理融合法对各子空间的监测结果进行信息融合,获得分布式监测结果.通过工业实例验证所提方法的性能.结果表明,所提方法在全厂流程中有效提升了早期故障检测的准确率和灵敏度.
关键词
全厂流程
早期故障检测
两层子空间划分
加权移动窗口
局部离群因子
贝叶斯推理融合
Keywords
plant-wide process
incipient fault detection
two-layer subspace partitioning
weighted moving window
local outlier factor
Bayesian inference fusion
分类号
TP277 [自动化与计算机技术—检测技术与自动化装置]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多子空间加权移动窗主成分分析的全厂流程早期故障检测
宋易盟
宋冰
侍洪波
康永波
《浙江大学学报(工学版)》
EI
CAS
CSCD
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部