为提升时间序列的聚类精度,提出一种融合优化可调Q因子小波变换的改进密度峰值聚类(improved density peaks clustering based on optimal tunable Q-factor wavelet transform,OTQWT-IDPC)算法,该算法利用可调Q因子小波变换的能量优化...为提升时间序列的聚类精度,提出一种融合优化可调Q因子小波变换的改进密度峰值聚类(improved density peaks clustering based on optimal tunable Q-factor wavelet transform,OTQWT-IDPC)算法,该算法利用可调Q因子小波变换的能量优化选择策略及改进粒子群优化算法确定的最佳Q因子分解时序信号,通过最优特征子带的能量、均值、标准差和模糊熵构建特征子空间,并采用主成分分析降低特征维度,以减少特征冗余。同时,考虑到距离较远而周围密集程度较大的K近邻样本对局部密度的贡献率,引入权重系数及K近邻重新定义DPC的局部密度,并利用共享最近邻描述样本间的相似性。在BONN癫痫脑电信号和CWRU滚动轴承数据集上进行对比实验,结果表明,该算法的聚类精度分别为95%、94%,且Jacarrd、FMI和F_(1)值指标均优于其他对比算法,证明了OTQWT-IDPC算法的有效性。展开更多
为强化心电信号渐变特征、提高时序信号分类精度,基于Bi-LSTM提出了一种融合渐变数据特征的自适应算法IGF+Bi-LSTM(self-adaptive Bi-LSTM based on integrating gradient features)。该算法在一定范围内自适应选取相似程度最高的渐变...为强化心电信号渐变特征、提高时序信号分类精度,基于Bi-LSTM提出了一种融合渐变数据特征的自适应算法IGF+Bi-LSTM(self-adaptive Bi-LSTM based on integrating gradient features)。该算法在一定范围内自适应选取相似程度最高的渐变数据特征,通过数据融合强化渐变特征在网络隐空间的交互,拓展Bi-LSTM信息传递模式;针对时序信号间存在周期性不匹配和强度不一致的问题,提出一种基于差分的改进的B式距离,以刻画数据和不同标签数据全体间的差异度S并自适应调整IGF+Bi-LSTM中的融合系数。实验表明,该算法在ECG数据集上的分类精度达到98.7%,F1值为98.7%,证明了IGF+Bi-LSTM算法的有效性和实用性。展开更多
文摘为提升时间序列的聚类精度,提出一种融合优化可调Q因子小波变换的改进密度峰值聚类(improved density peaks clustering based on optimal tunable Q-factor wavelet transform,OTQWT-IDPC)算法,该算法利用可调Q因子小波变换的能量优化选择策略及改进粒子群优化算法确定的最佳Q因子分解时序信号,通过最优特征子带的能量、均值、标准差和模糊熵构建特征子空间,并采用主成分分析降低特征维度,以减少特征冗余。同时,考虑到距离较远而周围密集程度较大的K近邻样本对局部密度的贡献率,引入权重系数及K近邻重新定义DPC的局部密度,并利用共享最近邻描述样本间的相似性。在BONN癫痫脑电信号和CWRU滚动轴承数据集上进行对比实验,结果表明,该算法的聚类精度分别为95%、94%,且Jacarrd、FMI和F_(1)值指标均优于其他对比算法,证明了OTQWT-IDPC算法的有效性。
文摘为强化心电信号渐变特征、提高时序信号分类精度,基于Bi-LSTM提出了一种融合渐变数据特征的自适应算法IGF+Bi-LSTM(self-adaptive Bi-LSTM based on integrating gradient features)。该算法在一定范围内自适应选取相似程度最高的渐变数据特征,通过数据融合强化渐变特征在网络隐空间的交互,拓展Bi-LSTM信息传递模式;针对时序信号间存在周期性不匹配和强度不一致的问题,提出一种基于差分的改进的B式距离,以刻画数据和不同标签数据全体间的差异度S并自适应调整IGF+Bi-LSTM中的融合系数。实验表明,该算法在ECG数据集上的分类精度达到98.7%,F1值为98.7%,证明了IGF+Bi-LSTM算法的有效性和实用性。