采用压缩和激励网络(squeeze and excitation network,SENET)构建双塔推荐模型,针对卷烟消费推荐问题进行了研究.基于长期采集的包含用户、商品和历史交互信息的数据集,使用SENET双塔推荐模型对该数据集进行建模,以预测用户的卷烟消费行...采用压缩和激励网络(squeeze and excitation network,SENET)构建双塔推荐模型,针对卷烟消费推荐问题进行了研究.基于长期采集的包含用户、商品和历史交互信息的数据集,使用SENET双塔推荐模型对该数据集进行建模,以预测用户的卷烟消费行为.实验结果表明,基于SENET双塔构架的卷烟消费推荐模型在消费者与产品间的交互信息获取上具有优势;与传统的推荐算法相比,SENET双塔推荐模型具有更好的推荐效果.展开更多
文摘采用压缩和激励网络(squeeze and excitation network,SENET)构建双塔推荐模型,针对卷烟消费推荐问题进行了研究.基于长期采集的包含用户、商品和历史交互信息的数据集,使用SENET双塔推荐模型对该数据集进行建模,以预测用户的卷烟消费行为.实验结果表明,基于SENET双塔构架的卷烟消费推荐模型在消费者与产品间的交互信息获取上具有优势;与传统的推荐算法相比,SENET双塔推荐模型具有更好的推荐效果.