期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于分形残差网络的单幅图像超分辨率重建
被引量:
3
1
作者
陈乔松
宗冕
+4 位作者
官暘珺
范金松
王子权
邓欣
王进
《重庆邮电大学学报(自然科学版)》
CSCD
北大核心
2022年第1期172-180,共9页
近年来,各种基于卷积神经网络的单幅图像超分辨率方法取得了优异的性能提升。现有的超分辨率网络大多数都是使用单种尺度的卷积核来提取低分辨率图像的特征信息,这样很容易造成细节信息的遗漏,也无法很好地利用低分辨率图像的多尺度特...
近年来,各种基于卷积神经网络的单幅图像超分辨率方法取得了优异的性能提升。现有的超分辨率网络大多数都是使用单种尺度的卷积核来提取低分辨率图像的特征信息,这样很容易造成细节信息的遗漏,也无法很好地利用低分辨率图像的多尺度特征来提高图像的表达能力。为了解决超分辨率重建中存在的问题,提出了一种新的超分辨重建方法称为分型残差网络(fractal residual network,FRN)。该网络使用分形残差注意力块,充分利用不同的层次特征,生成更精细的特征。同时,引入信道注意机制,自适应地重新缩放每个通道的特征,增加网络判别学习能力。此外,该算法将局部残差学习与全局残差学习相结合,以弥补信息丢失,降低学习难度。实验结果表明,该方法在重建性能上优于其他很多算法。
展开更多
关键词
超分辨率
残差学习
分形块
卷积神经网络
下载PDF
职称材料
题名
基于分形残差网络的单幅图像超分辨率重建
被引量:
3
1
作者
陈乔松
宗冕
官暘珺
范金松
王子权
邓欣
王进
机构
重庆邮电大学计算机科学与技术学院数据工程与可视计算重点实验室
出处
《重庆邮电大学学报(自然科学版)》
CSCD
北大核心
2022年第1期172-180,共9页
文摘
近年来,各种基于卷积神经网络的单幅图像超分辨率方法取得了优异的性能提升。现有的超分辨率网络大多数都是使用单种尺度的卷积核来提取低分辨率图像的特征信息,这样很容易造成细节信息的遗漏,也无法很好地利用低分辨率图像的多尺度特征来提高图像的表达能力。为了解决超分辨率重建中存在的问题,提出了一种新的超分辨重建方法称为分型残差网络(fractal residual network,FRN)。该网络使用分形残差注意力块,充分利用不同的层次特征,生成更精细的特征。同时,引入信道注意机制,自适应地重新缩放每个通道的特征,增加网络判别学习能力。此外,该算法将局部残差学习与全局残差学习相结合,以弥补信息丢失,降低学习难度。实验结果表明,该方法在重建性能上优于其他很多算法。
关键词
超分辨率
残差学习
分形块
卷积神经网络
Keywords
super-resolution
residual learning
fractal block
neural networks
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于分形残差网络的单幅图像超分辨率重建
陈乔松
宗冕
官暘珺
范金松
王子权
邓欣
王进
《重庆邮电大学学报(自然科学版)》
CSCD
北大核心
2022
3
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部