为解决自主移动机器人非结构化道路识别检测准确性、鲁棒性及实时性的问题,提出一种基于感兴趣区域(Region of Interest,ROI)与多层感知器(Multi-Layer Perceptron,MLP)为核心的自监督在线修正算法.首先,通过ROI算法规定被处理图像的有...为解决自主移动机器人非结构化道路识别检测准确性、鲁棒性及实时性的问题,提出一种基于感兴趣区域(Region of Interest,ROI)与多层感知器(Multi-Layer Perceptron,MLP)为核心的自监督在线修正算法.首先,通过ROI算法规定被处理图像的有效计算区域;其次,利用多层感知器对样本数据进行训练,将感兴趣区域按相应特征实现分类处理,并对分类区域进行形态学处理及特征提取处理,筛选出有效的行驶区域;最后,通过自监督在线修正算法替换错误处理结果,进一步保障道路分类识别的准确性.实验结果表明,改进算法能准确地识别出环境中的道路区域,具有良好的实时性与可靠性.展开更多
文摘为解决自主移动机器人非结构化道路识别检测准确性、鲁棒性及实时性的问题,提出一种基于感兴趣区域(Region of Interest,ROI)与多层感知器(Multi-Layer Perceptron,MLP)为核心的自监督在线修正算法.首先,通过ROI算法规定被处理图像的有效计算区域;其次,利用多层感知器对样本数据进行训练,将感兴趣区域按相应特征实现分类处理,并对分类区域进行形态学处理及特征提取处理,筛选出有效的行驶区域;最后,通过自监督在线修正算法替换错误处理结果,进一步保障道路分类识别的准确性.实验结果表明,改进算法能准确地识别出环境中的道路区域,具有良好的实时性与可靠性.