-
题名基于多重注意力机制优化的卷积网络故障诊断方法
被引量:1
- 1
-
-
作者
张汉霖
王贞
吴志勇
赵康
闫正义
张雨
寇超凡
-
机构
青岛大学电气工程学院
-
出处
《现代电子技术》
2023年第21期68-75,共8页
-
基金
山东省自然科学基金项目(ZR201911140024)
山东省本科教学研究项目(M2020062)资助。
-
文摘
为了进一步提高模拟电路故障诊断的正确率,提出一种基于多重注意力机制的一维卷积神经网络故障诊断方法。该方法针对数据的维度调整网络参数,采用自适应力矩估计算法为不同的参数设计独立的自适应性学习率从而训练网络,并引入多重注意力机制以增强网络提取特征的能力,从而提高诊断正确率。实验结果表明,在对Sallen⁃Key滤波器电路诊断测试时正确率达到100%,在对四运放双二阶滤波电路进行故障诊断时,该方法仍具有99.74%的正确率,相比不添加注意力机制的方法高出1.8%,展现出较强的诊断能力。
-
关键词
故障诊断
模式识别
深度学习
一维卷积神经网络
模拟电路
注意力机制
特征提取
-
Keywords
fault diagnosis
mode recognition
deep learning
one⁃dimensional convolutionneural network
analog circuit
attention mechanism
feature extraction
-
分类号
TN711-34
[电子电信—电路与系统]
-