In the present study, we aimed to intensively study the chemical constituents, especially organic acids from a medicinal plant Portulaca oleracea L., and screen their anti-inflammatory and quinone reductase (QR, a ph...In the present study, we aimed to intensively study the chemical constituents, especially organic acids from a medicinal plant Portulaca oleracea L., and screen their anti-inflammatory and quinone reductase (QR, a phase II detoxyfication enzyme) inductive activity. A total of 20 compounds were isolated and identified based on spectroscopic methods, as succinic acid (1), mono-methyl succinate (2), L-malic acid (3), L-l-methyl malate (4), L-4-methyl malate (5), L-dimethyl malate (6), L-6-ethyl citrate (7), L-1-methyl citrate (8), L-1,5-dimethyl citrate (9), 4-hydroxy-5-methylfuran-3-carboxylic acid (10), 5-hydroxymethyl-furoic acid (11), stearic acid (12), L-pyroglutamic acid (13), cyclo-(tyrosine-leucine) (14), L-isoleucine (15), (-)-dehydrovomifoliol (16), (-)-epiloliolide (17), 3,4-dihydroxyphenylethanol (18), succinimide (19), and uracil (20). Among them, 14 compounds (2, 4-8, 10, 11, 13-18) were isolated from P. oleracea for the first time. Compotmd 18 (12.5 μM) exhibited potent anti-inflammatory effect in lipopolysaccharide (LPS)-induced macrophage cells (RAW264.7) by reducing NO production, and it also increased QR activity in Hepa lclc7 cells. Compound 16 (50 μM) showed weak QR inductive activity. None of other compounds showed anti-inflammatory or QR inductive activities.展开更多
基金National Natural Science Foundation of China(Grant No.81073005)Science and Technology Development Program of Shandong Province(Grant No.2014GSF119007)+2 种基金Major Project of Science and Technology of Shandong Province(Grant No.2015ZDJS04001)Young Scholars Program of Shandong University(Grant No.YSPSDU2015WLJH50)China-Australia Centre for Health Sciences Research(2015)
文摘In the present study, we aimed to intensively study the chemical constituents, especially organic acids from a medicinal plant Portulaca oleracea L., and screen their anti-inflammatory and quinone reductase (QR, a phase II detoxyfication enzyme) inductive activity. A total of 20 compounds were isolated and identified based on spectroscopic methods, as succinic acid (1), mono-methyl succinate (2), L-malic acid (3), L-l-methyl malate (4), L-4-methyl malate (5), L-dimethyl malate (6), L-6-ethyl citrate (7), L-1-methyl citrate (8), L-1,5-dimethyl citrate (9), 4-hydroxy-5-methylfuran-3-carboxylic acid (10), 5-hydroxymethyl-furoic acid (11), stearic acid (12), L-pyroglutamic acid (13), cyclo-(tyrosine-leucine) (14), L-isoleucine (15), (-)-dehydrovomifoliol (16), (-)-epiloliolide (17), 3,4-dihydroxyphenylethanol (18), succinimide (19), and uracil (20). Among them, 14 compounds (2, 4-8, 10, 11, 13-18) were isolated from P. oleracea for the first time. Compotmd 18 (12.5 μM) exhibited potent anti-inflammatory effect in lipopolysaccharide (LPS)-induced macrophage cells (RAW264.7) by reducing NO production, and it also increased QR activity in Hepa lclc7 cells. Compound 16 (50 μM) showed weak QR inductive activity. None of other compounds showed anti-inflammatory or QR inductive activities.