期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于近邻传播聚类的集成特征选择方法 被引量:6
1
作者 孟军 尉双云 《计算机科学》 CSCD 北大核心 2015年第3期241-244,260,共5页
针对高维数据中的类标记仅与少部分特征关联紧密的问题,提出了基于排序聚合和聚类分组的特征随机选择集成学习方法。采用排序聚合技术对特征进行过滤,选出与样本分类相关的特征,以bicor关联系数作为关联衡量标准,利用近邻传播聚类算法... 针对高维数据中的类标记仅与少部分特征关联紧密的问题,提出了基于排序聚合和聚类分组的特征随机选择集成学习方法。采用排序聚合技术对特征进行过滤,选出与样本分类相关的特征,以bicor关联系数作为关联衡量标准,利用近邻传播聚类算法进行分组,使不同组的特征互不关联,然后从每个分组中随机选择一个特征生成特征子集,便可得到多个既存在差异性又具备区分能力的特征子集,最后分别在对应的特征子空间训练基分类器,采用多数投票进行融合集成。在7个基因表达数据集上的实验结果表明,提出的方法分类误差较低,分类性能稳定,可扩展性好。 展开更多
关键词 分类 排序聚合 近邻传播聚类 集成特征选择
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部