期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
可见近红外光谱的山西玉米地土壤氮含量建模 被引量:1
1
作者 马玮键 邢泽炳 +3 位作者 韩春风 桑梓繁 尚恺霖 李宇航 《山西农业科学》 2023年第7期750-755,共6页
土壤的粒度、水分等因素均会影响土壤的光谱特征,不同地区土壤因不同的气候和地理条件导致其土壤光谱特征存在差异,利用近红外光谱技术建立的土壤成分预测模型往往也有其特殊性。为了为后续开发基于近红外光谱技术的土壤氮含量速测仪提... 土壤的粒度、水分等因素均会影响土壤的光谱特征,不同地区土壤因不同的气候和地理条件导致其土壤光谱特征存在差异,利用近红外光谱技术建立的土壤成分预测模型往往也有其特殊性。为了为后续开发基于近红外光谱技术的土壤氮含量速测仪提供参考,以山西玉米地土壤为研究对象,利用可见近红外光谱快速分析技术预测土壤氮含量,试验采集山西农业大学玉米试验田土壤样本120个,并测定总氮含量和采集可见近红外光谱。利用光谱-理化值共生距离(SPXY)算法按2∶1的比例划分校正集和预测集,分析采用平滑处理(Smoothing)、标准状态变换(SNV)、基线校正(Baseline)、去趋势处理(Detrend)、归一化(Normalize)和多元散射矫正(MSC)6种预处理方法并结合偏最小二乘法(PLS)、支持向量机(SVM)、主成分回归(PCR)3种建模方法建立土壤氮含量预测模型的效果,并选出最佳预测模型。结果显示,在所建立的21种预测模型中,采用Smoothing预处理方法并结合PLS建立的预测模型效果最佳,其决定系数为0.907,预测均方根误差(RMSEP)为0.086。此预测模型可有效预测山西玉米地的土壤氮含量。 展开更多
关键词 土壤 可见近红外光谱 全氮 光谱-理化值共生距离算法 快速检测 山西玉米地
下载PDF
基于近红外光谱的土壤氮含量模型及生物炭对土壤光谱的影响
2
作者 马玮键 邢泽炳 +3 位作者 韩春风 桑梓繁 尚恺霖 李宇航 《农业工程》 2022年第12期22-27,共6页
采集添加生物炭的土壤(标记为ABS)和不添加生物炭的土壤(标记为CS),获取其近红外光谱,通过预处理算法和偏最小二乘法(partial least squares,PLS)建立两种土壤氮含量预测模型。试验结果显示,CS和ABS分别经过Baseline和Smoothing预处理... 采集添加生物炭的土壤(标记为ABS)和不添加生物炭的土壤(标记为CS),获取其近红外光谱,通过预处理算法和偏最小二乘法(partial least squares,PLS)建立两种土壤氮含量预测模型。试验结果显示,CS和ABS分别经过Baseline和Smoothing预处理的预测模型效果最好,定向系数(determination coefficient,R2)分别为0.913和0.753,预测均方根误差(root mean square error of prediction,RMSEP)分别为0.093和0.753,利用近红外光谱可对两种土壤氮含量建模预测。研究了生物炭对土壤光谱及建模的影响,结果表明,添加生物炭会改变土壤成分含量,使近红外光谱和建模不同于普通土壤,而联合建模可减小差异的影响,取得较好的预测效果,联合建模结果显示,经过Smoothing预处理的预测效果最好,R2为0.907,RMSEP为0.086。 展开更多
关键词 近红外光谱 土壤 全氮 生物炭 快速检测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部