期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于LSTM-GRU模型的TBM掘进参数时序预测研究
被引量:
4
1
作者
杨耀红
刘德福
+3 位作者
韩兴忠
尚李落
代静
孙小虎
《水力发电》
CAS
2023年第2期78-84,104,共8页
隧道掘进机(TBM)施工效率对于地质条件的高度敏感性,以及TBM设备智能控制并最终实现无人驾驶,都对在复杂地质条件中精准预测TBM掘进参数提出了更高要求。为精准预测不同等级围岩下TBM的掘进速度、总推力、刀盘转速和刀盘扭矩,基于向原...
隧道掘进机(TBM)施工效率对于地质条件的高度敏感性,以及TBM设备智能控制并最终实现无人驾驶,都对在复杂地质条件中精准预测TBM掘进参数提出了更高要求。为精准预测不同等级围岩下TBM的掘进速度、总推力、刀盘转速和刀盘扭矩,基于向原始数据学习和向误差学习的双学习机制,建立了掘进参数时序预测模型LSTM-GRU,并对某引水工程隧洞TBM施工实例进行了计算分析,验证了模型的有效性。最后选用决定系数R 2、均方根误差、平均绝对误差、平均相对误差等4个参数,分别与广义回归神经网络GRNN、长短时记忆网络LSTM以及门控循环网络GRU的预测结果进行比较分析,结果表明,Ⅱ级围岩和Ⅲ级围岩下,LSTM-GRU模型的预测精度更高。研究结论可为隧洞工程TBM施工控制提供参考。
展开更多
关键词
隧道掘进机(TBM)
掘进参数
时序预测
双学习机制
LSTM-GRU模型
误差分析
下载PDF
职称材料
题名
基于LSTM-GRU模型的TBM掘进参数时序预测研究
被引量:
4
1
作者
杨耀红
刘德福
韩兴忠
尚李落
代静
孙小虎
机构
华北水利水电大学水利学院
河南省黄河流域水资源节约集约利用重点实验室
中水北方勘测设计研究有限责任公司
出处
《水力发电》
CAS
2023年第2期78-84,104,共8页
基金
国家自然科学基金重点项目(51679089)
河南省学科创新引智基地项目“智慧水利”(GXJD004)。
文摘
隧道掘进机(TBM)施工效率对于地质条件的高度敏感性,以及TBM设备智能控制并最终实现无人驾驶,都对在复杂地质条件中精准预测TBM掘进参数提出了更高要求。为精准预测不同等级围岩下TBM的掘进速度、总推力、刀盘转速和刀盘扭矩,基于向原始数据学习和向误差学习的双学习机制,建立了掘进参数时序预测模型LSTM-GRU,并对某引水工程隧洞TBM施工实例进行了计算分析,验证了模型的有效性。最后选用决定系数R 2、均方根误差、平均绝对误差、平均相对误差等4个参数,分别与广义回归神经网络GRNN、长短时记忆网络LSTM以及门控循环网络GRU的预测结果进行比较分析,结果表明,Ⅱ级围岩和Ⅲ级围岩下,LSTM-GRU模型的预测精度更高。研究结论可为隧洞工程TBM施工控制提供参考。
关键词
隧道掘进机(TBM)
掘进参数
时序预测
双学习机制
LSTM-GRU模型
误差分析
Keywords
tunnel boring machine(TBM)
tunneling parameters
time series prediction
dual learning mechanism
LSTM-GRU model
error analysis
分类号
U455 [建筑科学—桥梁与隧道工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于LSTM-GRU模型的TBM掘进参数时序预测研究
杨耀红
刘德福
韩兴忠
尚李落
代静
孙小虎
《水力发电》
CAS
2023
4
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部