期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于激光诱导荧光技术的煤矿水源识别研究 被引量:5
1
作者 闫鹏程 尚松行 +2 位作者 周孟然 胡锋 刘瑜 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2020年第7期2176-2181,共6页
快速准确的识别煤矿含水层水源对于煤矿突水预警及灾后救援意义重大,针对传统水源识别耗时较长,不适宜构建在线式预警系统,提出使用激光诱导荧光技术用于煤矿水源类型识别的方法。利用激光激发待测水样,获取其荧光光谱,结合模式识别对... 快速准确的识别煤矿含水层水源对于煤矿突水预警及灾后救援意义重大,针对传统水源识别耗时较长,不适宜构建在线式预警系统,提出使用激光诱导荧光技术用于煤矿水源类型识别的方法。利用激光激发待测水样,获取其荧光光谱,结合模式识别对水源进行快速辨识。实验采集了淮南矿区谢桥煤矿的两种纯水样本-老空水与砂岩水,并根据不同混合比配成5种混合水样进行实验。首先针对获取的水源荧光光谱中可能会存在的各种噪声及干扰信息,采用SG、 Normalize、 Gapsegment求导、 Detrend和MSC 5种常用的光谱预处理算法对光谱数据进行处理。其次针对荧光光谱数据量过大,对数据进行PCA降维,作为对比6种预处理方式(含原始光谱)主成分数皆取3,结果显示SG预处理累计贡献度最大,为97.26%;其次是原始光谱,为92.38%, Normalize与Detrend累计贡献度相差不大,分别为88.04%和87.59%, MSC为66.41%, Gapsegment最差,为22.65%。最后分别对PCA降维后的数据使用线性LDA以及非线性RBF-SVM模型进行识别对比。使用LDA进行建模, SG-PCA-LDA正确率最高,达到了98.86%,依据建立的LDA模型,对验证集数据进行识别, SG-PCA-LDA的正确率依然最高,为100%。使用RBF-SVM进行建模, Original-PCA-RBF-SVM, SG-PCA-RBF-SVM, Normalize-PCA-RBF-SVM正确率最高,皆为97.14%,依据建立的RBF-SVM模型,对验证集数据进行识别, Original-PCA-RBF-SVM和SG-PCA-RBF-SVM正确率依然最高,为97.14%。对比两类模型可以发现, LDA验证集正确率较建模集有一定的提升,而RBF-SVM验证集正确率较建模集有小幅度降低,说明LDA模型对于此煤矿水源荧光光谱数据的泛化能力较好,且成功率较高。结果表明, SG-PCA-LDA模型结合激光诱导荧光技术是一种较佳的应用于本地煤矿水源识别的方法,且验证了对老空水、砂岩水的纯水样和混合水样识别的可能性,可以推广到煤矿其他混合水源的识别中。 展开更多
关键词 激光诱导荧光技术 水源识别 煤矿含水层 LDA RBF-SVM
下载PDF
LIF技术与ELM算法的电力变压器故障诊断研究 被引量:14
2
作者 闫鹏程 张超银 +3 位作者 孙全胜 尚松行 尹妮妮 张孝飞 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2022年第5期1459-1464,共6页
电力变压器油的检测分析是电力变压器故障诊断的有效方法,快速识别电力变压器油的油样对电力变压器故障诊断工作有重大意义。常规的电力变压器油的检测技术主要是气相色谱法,此方法操作比较复杂,且不适合在线检测,不能及时发现变压器的... 电力变压器油的检测分析是电力变压器故障诊断的有效方法,快速识别电力变压器油的油样对电力变压器故障诊断工作有重大意义。常规的电力变压器油的检测技术主要是气相色谱法,此方法操作比较复杂,且不适合在线检测,不能及时发现变压器的故障隐患。提出一种激光诱导荧光光谱(LIF)技术与极限学习机(ELM)算法的电力变压器故障诊断研究的方法。实验采集四种油样,分别为热性故障油、电性故障油、局部受潮油以及原油。使用激光发生器激发油样而发射荧光,获取不同油样光谱数据,采用MSC、SNV预处理算法对光谱数据进行处理,防止噪声等因素干扰。随后,利用KPCA和PCA降维,主成分个数皆取5,KPCA处理后显示MSC预处理的累计贡献率最高,为99%,经MSC预处理的PCA模型累计贡献率依然达到95%以上,Original-KPCA与Original-PCA模型的累计贡献率均达到65%以下,可以发现,采用预处理的模型,累计贡献率均有上升。最后,分别对两种降维后的数据利用ELM进行回归拟合。实验表明,KPCA、PCA两种降维方式,KPCA算法表现性能较好,处理数据时间更短,提高了模型的可靠性和效率。同KPCA降维方式下,MSC-ELM模型的拟合优度R^(2)为0.99941,均方误差MSE为0.074%;SNV-ELM拟合优度R^(2)为0.99908,均方误差MSE为0.129%;Original-ELM拟合优度R^(2)为0.99695,均方误差MSE为0.399%;对比可以发现MSC比SNV处理后的效果更好,MSC-KPCA-ELM模型表现效果最佳,预测值与真实值更为接近,均方根误差最小。结果证明,MSC-KPCA-ELM模型结合激光诱导荧光光谱技术更加适用于对电力变压器是否发生故障的快速诊断,精确判断为哪种故障类型,保障电力设备的运行安全。 展开更多
关键词 激光诱导荧光光谱 极限学习机 变压器油 KPCA PCA
下载PDF
改进BP神经网络算法对煤矿水源的分类研究 被引量:9
3
作者 闫鹏程 尚松行 +1 位作者 张超银 张孝飞 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2021年第7期2288-2293,共6页
煤矿安全对煤炭工业的健康持续发展至关重要,而煤矿水灾又是煤矿事故的重大隐患,因此煤矿水源数据的处理对于预防矿井突水事故具有重要意义。实验在激光器的辅助下利用激光诱导荧光技术获取7种水源的数据信息,设定激光发射功率为100 mW... 煤矿安全对煤炭工业的健康持续发展至关重要,而煤矿水灾又是煤矿事故的重大隐患,因此煤矿水源数据的处理对于预防矿井突水事故具有重要意义。实验在激光器的辅助下利用激光诱导荧光技术获取7种水源的数据信息,设定激光发射功率为100 mW,向被测水体发射波长405 nm激光,获取实验水样210组的荧光光谱数据,为了剔除光谱在采集过程受到的荧光背景、检测器噪声以及功率波动等影响,利用SG平滑、多元散射矫正(MSC)预处理对数据进行降噪以及提高光谱特异性,由于初始数据运算量过大并对数据压缩、消除冗余和数据噪音,利用主成分分析(PCA)分别对7种水样进行建模降维处理,从而得到小数据并且保持原有信息的数据特征。为了识别煤矿水源的突水类型,对于降维后的数据利用粒子群算法(PSO)优化BP神经网络,PSO算法通过对新粒子的适应度值和个体极值、群体极值适应度值的比较更新个体极值和群体极值的位置,将最优初始权值和阈值赋予BP神经网络,从而对待测水样的种类进行预测分析。普通的PSO优化BP神经网络,容易出现早熟收敛,故在改进的PSO算法中引入变异因子来提高模型寻找更优解的可能性。实验证明:SG,MSC以及Original三种预处理方式中,SG算法表现良好,提高了模型的相关性。在SG预处理的前提下,BP的决定系数R^(2)为0.9845,平均相对误差MRE 7.39%,均方根误差为7.25%;PSO-BP的决定系数R^(2)为0.9998,平均相对误差MRE 0.17%,均方根误差0.08%;IPSO-BP的决定系数R^(2)达到0.9999,平均相对误差MRE和均方根误差RMSE皆为0.01%。结果表明:经SG预处理过后的光谱数据,比MSC预处理效果更精确,改进的粒子群优化算法更适用于该实验的矿井水源分类。 展开更多
关键词 激光诱导荧光技术 预处理 改进的粒子群优化算法
下载PDF
便携式移动广告牌设计 被引量:1
4
作者 王颖 尚松行 +3 位作者 方传情 李建波 王志鸣 郭丰 《机械工程与自动化》 2017年第3期171-172,共2页
采用STM32F103ZET6微处理器设计了便携式移动广告牌。利用高频率的动态扫描方式,向点阵模块输送数据来控制指示灯亮灭,利用人眼的余辉效应,能显示出一个稳定的图形或文字。该设计适应了现代社会人们对信息及时准确大量获取的需求,达到... 采用STM32F103ZET6微处理器设计了便携式移动广告牌。利用高频率的动态扫描方式,向点阵模块输送数据来控制指示灯亮灭,利用人眼的余辉效应,能显示出一个稳定的图形或文字。该设计适应了现代社会人们对信息及时准确大量获取的需求,达到了迅速传播信息的目的。 展开更多
关键词 STM32F103ZET6 LED点阵 广告牌 设计
下载PDF
LIF结合LSTM神经网络的矿井水源识别
5
作者 闫鹏程 张孝飞 +1 位作者 尚松行 张超银 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2022年第10期3091-3096,共6页
矿井水害对煤矿安全生产存在巨大威胁,所以快速识别矿井突水水源,对煤矿水灾预警及灾后救援工作开展都有重大意义。激光诱导荧光(LIF)技术具有快速、高效、灵敏度高等特点,克服了传统水化学方法识别时间长的缺点。循环神经网络(RNN)在... 矿井水害对煤矿安全生产存在巨大威胁,所以快速识别矿井突水水源,对煤矿水灾预警及灾后救援工作开展都有重大意义。激光诱导荧光(LIF)技术具有快速、高效、灵敏度高等特点,克服了传统水化学方法识别时间长的缺点。循环神经网络(RNN)在解决长序列训练过程中产生的梯度消失、梯度爆炸等问题上存在明显不足,而特殊变体RNN即长短期记忆(LSTM)神经网络很好地弥补了RNN的短板及缺陷。提出了将LIF技术与LSTM算法相结合,应用在矿井突水水源快速识别中。实验样本采自淮南矿区,以砂岩水和老空水为原始样本,并将砂岩水和老空水按照不同比例混合配置成5种混合水样,共7种待测水样进行实验。首先采用最大最小值归一化(MinMaxScaler)、平滑滤波(SG)以及标准正态变量变换(SNV)三种预处理方法对原始光谱数据进行预处理,减少原始光谱数据存在的噪声和干扰信息。之后为防止数据量过大,维度过高,将包括原始光谱数据在内的四组数据再进行LDA降维至3维。最后分别搭建LSTM识别模型,从测试集预测准确率、训练集准确率变化趋势以及训练集损失函数变化趋势三个方面进行比较,选择最优模型。其中SG+LDA+LSTM和Original+LDA+LSTM在测试集预测准确率上都能达到100%,MinMaxScaler+LDA+LSTM测试集预测准确率在98.57%,SNV+LDA+LSTM准确率最低,只有87.14%;在训练集准确率变化趋势表现上,SG+LDA+LSTM能够保持良好的学习,很快达到100%,Original+LDA+LSTM和MinMaxScaler+LDA+LSTM也能达到100%的准确率,但在前几次训练过程中会有准确率下降的情况出现,SNV+LDA+LSTM训练集准确率在训练次数内并未达到100%;SG+LDA+LSTM损失函数变化趋势也具有很好的收敛性和稳定性,Original+LDA+LSTM,MinMaxScaler+LDA+LSTM以及SNV+LDA+LSTM在损失函数变化趋势上表现并不出色。结果表明,4组模型中,SG+LDA+LSTM模型是最适合应用于矿井突水识别,该方法补充了矿井突水水源识别工作的内容,为矿井突水识别提供了新的思路。 展开更多
关键词 水源识别 激光诱导荧光光谱 预处理 LDA LSTM
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部