期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于预训练语言模型的健康谣言检测
被引量:
4
1
作者
许诺
赵薇
+1 位作者
尚柯源
陈浩宇
《系统科学与数学》
CSCD
北大核心
2022年第10期2582-2589,共8页
当前大多数谣言检测主要面向社交媒体数据,所处理文本序列较短,然而面向包含多个句子的段落或长序列文本篇章输入时,因不能提取有效特征进而影响模型识别效果.为获取谣言检测的有效信息,文章提出基于I-BERT-BiLSTM (Improved-BERT-BiLS...
当前大多数谣言检测主要面向社交媒体数据,所处理文本序列较短,然而面向包含多个句子的段落或长序列文本篇章输入时,因不能提取有效特征进而影响模型识别效果.为获取谣言检测的有效信息,文章提出基于I-BERT-BiLSTM (Improved-BERT-BiLSTM)的健康类谣言检测方法,通过提取文档级长序列文本的摘要,并输入到以多层注意力机制为框架的深层神经网络进行特征提取,最后输入到BiLSTM进行谣言分类.实验结果表明:文章提出的I-BERT-BiLSTM模型在自建健康类谣言数据集与公开数据集上达到了97.75%和91.15%的准确率.
展开更多
关键词
谣言检测
预训练语言模型
摘要提取
I-BERT-BiLSTM
原文传递
题名
基于预训练语言模型的健康谣言检测
被引量:
4
1
作者
许诺
赵薇
尚柯源
陈浩宇
机构
中国传媒大学
出处
《系统科学与数学》
CSCD
北大核心
2022年第10期2582-2589,共8页
基金
中国传媒大学中央高校基本科研业务费专项(CUC220C008,CUC220B013)资助课题。
文摘
当前大多数谣言检测主要面向社交媒体数据,所处理文本序列较短,然而面向包含多个句子的段落或长序列文本篇章输入时,因不能提取有效特征进而影响模型识别效果.为获取谣言检测的有效信息,文章提出基于I-BERT-BiLSTM (Improved-BERT-BiLSTM)的健康类谣言检测方法,通过提取文档级长序列文本的摘要,并输入到以多层注意力机制为框架的深层神经网络进行特征提取,最后输入到BiLSTM进行谣言分类.实验结果表明:文章提出的I-BERT-BiLSTM模型在自建健康类谣言数据集与公开数据集上达到了97.75%和91.15%的准确率.
关键词
谣言检测
预训练语言模型
摘要提取
I-BERT-BiLSTM
Keywords
Rumor detection
pre-trained language model
text summarization
IBERT-BiLSTM
分类号
TP391.1 [自动化与计算机技术—计算机应用技术]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于预训练语言模型的健康谣言检测
许诺
赵薇
尚柯源
陈浩宇
《系统科学与数学》
CSCD
北大核心
2022
4
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部