期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
山区泥石流特点及其防治方法探讨 被引量:2
1
作者 尚科科 贾洪全 《化工设计通讯》 CAS 2017年第11期207-,共1页
在我国广袤的山区,泥石流是一种常见的自然灾害,且带来的危害较大。所以为了更好地加强对其的防治,切实注重环境保护工作的开展,就必须切实掌握山区泥石流的特点,并针对性的采取防治方法,才能更好地降低泥石流灾害带来的损失。基于这一... 在我国广袤的山区,泥石流是一种常见的自然灾害,且带来的危害较大。所以为了更好地加强对其的防治,切实注重环境保护工作的开展,就必须切实掌握山区泥石流的特点,并针对性的采取防治方法,才能更好地降低泥石流灾害带来的损失。基于这一背景,从山区泥石流的特点入手,分析了山区泥石流的形成要素,并提出了几点防治的方法。 展开更多
关键词 山区 泥石流 特点 防治
下载PDF
Online Clothing Recommendation and Style Compatibility Learning Based on Joint Semantic Feature Fusion
2
作者 FEI Yuzhe SHANG Keke +1 位作者 ZHAO Mingbo ZHANG Yue 《Journal of Donghua University(English Edition)》 CAS 2022年第4期325-331,共7页
Clothing plays an important role in humans’social life as it can enhance people’s personal quality,and it is a practical problem by answering the question“which item should be chosen to match current fashion items ... Clothing plays an important role in humans’social life as it can enhance people’s personal quality,and it is a practical problem by answering the question“which item should be chosen to match current fashion items in a set to form collocational and compatible outfits”.Motivated by this target an end-to-end clothing collocation learning framework is developed for handling the above task.In detail,the proposed framework firstly conducts feature extraction by fusing the features of deep layer from Inception-V3 and classification branch of mask regional convolutional neural network(Mask-RCNN),respectively,so that the low-level texture information and high-level semantic information can be both preserved.Then,the proposed framework treats the collocation outfits as a set of sequences and adopts bidirectional long short-term memory(Bi-LSTM)for the prediction.Extensive simulations are conducted based on DeepFashion2 datasets.Simulation results verify the effectiveness of the proposed method compared with other state-of-the-art clothing collocation methods. 展开更多
关键词 clothing recommendation style compatibility learning deep learning fashion analysis feature extraction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部