By analyzing and interpreting the newly acquired seismic profile supported by the national 973 Program and synthesizing the data with other geologic & geographic information, we draw conclusions as follows, a) Two s...By analyzing and interpreting the newly acquired seismic profile supported by the national 973 Program and synthesizing the data with other geologic & geographic information, we draw conclusions as follows, a) Two seismic reflections located at the northeast South China Sea (SCS) slope and the Hengchun ridge are the Bottom Simulated Reflections (BSRs). Yet, the genesis and process of the gas hydrate in these two areas are different because of different regional tectonics and geological environments; b) The genesis of gas hydrate located at the northeast SCS slope area is related to the broadly existing fracture zones, slumping tectosomes, and the distinctive shielding environment of pressure masking field formed by them. But the genesis of the gas hydrate at the Hengchun ridge is associated with the thrust nappe structures and accretionary wedges formed along the Manila subduction zone and the related sub-floor fluid channel system built by them; c) Since the analogous geologic bodies are broadly distributed at slope areas around SCS and the temperature-press environment is very suitable to the formation and conservation of the gas hydrate, we suggest that much more of this resource should be stored in these areas.展开更多
针对全球深海测深数据来源复杂、精度差异大、难以融合构建高精度数字水深模型(digital bathymetric model,DBM)的问题,提出一种适用于深水区多源水深数据融合的MF法(merge-fusion),并将其应用到马里亚纳海沟"挑战者深渊"的DB...针对全球深海测深数据来源复杂、精度差异大、难以融合构建高精度数字水深模型(digital bathymetric model,DBM)的问题,提出一种适用于深水区多源水深数据融合的MF法(merge-fusion),并将其应用到马里亚纳海沟"挑战者深渊"的DBM构建中。该方法通过"合并-融合"的技术路线,将多波束、单波束、电子海图数据与通用全球海洋地形数据(general bathymetric chart of the oceans,GEBCO)有机地融合在一起,在保留高分辨率地形细节特征的同时,合理填补了数据空白区。使用该方法构建"挑战者深渊"高精度DBM并与GEBCO数据进行对比,结果表明,该方法融合的DBM能更好地反映精细的地形特征信息,具有重要的实际应用价值。展开更多
文摘By analyzing and interpreting the newly acquired seismic profile supported by the national 973 Program and synthesizing the data with other geologic & geographic information, we draw conclusions as follows, a) Two seismic reflections located at the northeast South China Sea (SCS) slope and the Hengchun ridge are the Bottom Simulated Reflections (BSRs). Yet, the genesis and process of the gas hydrate in these two areas are different because of different regional tectonics and geological environments; b) The genesis of gas hydrate located at the northeast SCS slope area is related to the broadly existing fracture zones, slumping tectosomes, and the distinctive shielding environment of pressure masking field formed by them. But the genesis of the gas hydrate at the Hengchun ridge is associated with the thrust nappe structures and accretionary wedges formed along the Manila subduction zone and the related sub-floor fluid channel system built by them; c) Since the analogous geologic bodies are broadly distributed at slope areas around SCS and the temperature-press environment is very suitable to the formation and conservation of the gas hydrate, we suggest that much more of this resource should be stored in these areas.
文摘针对全球深海测深数据来源复杂、精度差异大、难以融合构建高精度数字水深模型(digital bathymetric model,DBM)的问题,提出一种适用于深水区多源水深数据融合的MF法(merge-fusion),并将其应用到马里亚纳海沟"挑战者深渊"的DBM构建中。该方法通过"合并-融合"的技术路线,将多波束、单波束、电子海图数据与通用全球海洋地形数据(general bathymetric chart of the oceans,GEBCO)有机地融合在一起,在保留高分辨率地形细节特征的同时,合理填补了数据空白区。使用该方法构建"挑战者深渊"高精度DBM并与GEBCO数据进行对比,结果表明,该方法融合的DBM能更好地反映精细的地形特征信息,具有重要的实际应用价值。