The planar flexible manipulator undergoing large deformation is investigated by using finite element method (FEM). Three kinds of reference frames are employed to describe the deformation of arbitrary point in the fle...The planar flexible manipulator undergoing large deformation is investigated by using finite element method (FEM). Three kinds of reference frames are employed to describe the deformation of arbitrary point in the flexible manipulator, which are global frame, body-fixed frame and co-rotational frame. The rigid-flexible coupling dynamic equation of the planar flexible manipulator is derived using the Hamilton’s principle. Numerical simulations are carried out in the end of this paper to demonstrate the effectiveness of the proposed model. The simulation results indicate that the proposed model is efficient not only for small deformation but also for large deformation.展开更多
基金The National Natural Science Foundation of China(No10372057 No10472065)
文摘The planar flexible manipulator undergoing large deformation is investigated by using finite element method (FEM). Three kinds of reference frames are employed to describe the deformation of arbitrary point in the flexible manipulator, which are global frame, body-fixed frame and co-rotational frame. The rigid-flexible coupling dynamic equation of the planar flexible manipulator is derived using the Hamilton’s principle. Numerical simulations are carried out in the end of this paper to demonstrate the effectiveness of the proposed model. The simulation results indicate that the proposed model is efficient not only for small deformation but also for large deformation.
基金supported by the National Natural Science Foundation of China(Grant Nos.12172214 and 12102252)the China Postdoctoral Science Foundation(Grant No.2021M692070)the Industry-University-Research Cooperation Fund of Shanghai Institute of Aerospace System Engineering(Grant No.USCAST2021-12).