期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于XGBoost与Lasso模型进行电负荷数据预测
1
作者
尤高琳
《智能城市应用》
2024年第3期96-99,共4页
本篇文章旨在探讨工厂电力负荷预测的算法和模型,以保证工厂生产系统的效率和稳定性。首先,我们分析了工厂电力负荷的特点和影响因素,主要包括工厂电力负荷的历史数据,以及基于历史数据衍生出特征。然后,我们提出了一种基于机器学习的...
本篇文章旨在探讨工厂电力负荷预测的算法和模型,以保证工厂生产系统的效率和稳定性。首先,我们分析了工厂电力负荷的特点和影响因素,主要包括工厂电力负荷的历史数据,以及基于历史数据衍生出特征。然后,我们提出了一种基于机器学习的电力负荷预测模型,该模型能够根据历史数据预测未来一段时间内的电力需求。通过对比不同的机器学习算法,我们发现Lasso回归模型在预测精度和稳定性方面表现最好。最后,我们通过实验验证了该模型的有效性和实用性,为工厂电力负荷管理提供了重要的参考依据。
展开更多
关键词
电力负荷预测
Lasso回归模型
机器学习模型
下载PDF
职称材料
题名
基于XGBoost与Lasso模型进行电负荷数据预测
1
作者
尤高琳
机构
北京宇信科技集团股份有限公司
出处
《智能城市应用》
2024年第3期96-99,共4页
文摘
本篇文章旨在探讨工厂电力负荷预测的算法和模型,以保证工厂生产系统的效率和稳定性。首先,我们分析了工厂电力负荷的特点和影响因素,主要包括工厂电力负荷的历史数据,以及基于历史数据衍生出特征。然后,我们提出了一种基于机器学习的电力负荷预测模型,该模型能够根据历史数据预测未来一段时间内的电力需求。通过对比不同的机器学习算法,我们发现Lasso回归模型在预测精度和稳定性方面表现最好。最后,我们通过实验验证了该模型的有效性和实用性,为工厂电力负荷管理提供了重要的参考依据。
关键词
电力负荷预测
Lasso回归模型
机器学习模型
Keywords
electricity load forecasting
Lasso regression model
machine learning models
分类号
F83 [经济管理—金融学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于XGBoost与Lasso模型进行电负荷数据预测
尤高琳
《智能城市应用》
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部