The design and construction of highly effective circularly polarized luminescence(CPL)-active materials has aroused considerable attention due to their widespread applications in sensors,optical devices,and asymmetric...The design and construction of highly effective circularly polarized luminescence(CPL)-active materials has aroused considerable attention due to their widespread applications in sensors,optical devices,and asymmetric synthesis.However,the exploration of novel CPL-active materials with high luminescence dissymmetry factor(glum)values is still a challenge.Herein,we describe a new approach for the preparation of supramolecular metallacycles with amplified CPL promoted by hierarchical self-assembly involving Pt···Pt interactions.Notably,the resultant metallacycles exhibited strong CPL signals with high glum values,while their corresponding precursors were CPL silent.The CPL amplification mechanism was comprehensively validated by ultravioletvisible absorption,emission spectroscopy,nuclear magnetic resonance spectroscopy,scanning electron microscopy,transmission electron microscopy,atomic force microscopy,coarse-grained molecular dynamics simulations,and timedependent density functional theory calculations.This work thus provides the first example of preparing highly effective CPL-active materials based on hierarchical self-assembly involving Pt···Pt interactions.展开更多
基金supported by the National Natural Science Foundation of China(21922506,21871092,and 21603074)Shanghai Pujiang Program(18PJD015)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Austrian Science Fund(M 2709-N28)for the financial support。
文摘The design and construction of highly effective circularly polarized luminescence(CPL)-active materials has aroused considerable attention due to their widespread applications in sensors,optical devices,and asymmetric synthesis.However,the exploration of novel CPL-active materials with high luminescence dissymmetry factor(glum)values is still a challenge.Herein,we describe a new approach for the preparation of supramolecular metallacycles with amplified CPL promoted by hierarchical self-assembly involving Pt···Pt interactions.Notably,the resultant metallacycles exhibited strong CPL signals with high glum values,while their corresponding precursors were CPL silent.The CPL amplification mechanism was comprehensively validated by ultravioletvisible absorption,emission spectroscopy,nuclear magnetic resonance spectroscopy,scanning electron microscopy,transmission electron microscopy,atomic force microscopy,coarse-grained molecular dynamics simulations,and timedependent density functional theory calculations.This work thus provides the first example of preparing highly effective CPL-active materials based on hierarchical self-assembly involving Pt···Pt interactions.