期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Study on Preparation and Properties of La_2O_3/MC Nylon Nanocomposites 被引量:9
1
作者 林轩 张平民 +1 位作者 尹周谰 陈启元 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第6期680-684,共5页
A series of La2O3/MC nylon nanocomposites were prepared via in situ polymerization. The effects of content of nano-La2O3 on the mechanical properties of nanocomposites were studied. Dispersion of nano-La2O3 in MC nylo... A series of La2O3/MC nylon nanocomposites were prepared via in situ polymerization. The effects of content of nano-La2O3 on the mechanical properties of nanocomposites were studied. Dispersion of nano-La2O3 in MC nylon matrix was observed with SEM. The crystal structure of nanocomposites was characterized by means of XRD. SEM analysis shows that La2O3 nanoparticles are uniformly dispersed in MC nylon matrix and little clustering exists when the content of nano- La2O3 is lower than 1%, however, when the content of nano-La2O3 is more than 1%, it begins to cluster. XRD analysis indicats that nano-La2O3 does not change the crystal structure of MC nylon. Mechanical properties tests show that the tensile strength, elongation at break, impact strength, flexural strength, and flexural modulus of nanocomposites first increase then decrease as the content of nano-La2O3 is increased. When the content of nano-La2O3 is 0.5%, the tensile strength and elongation at break of nanocomposites reach maximum, which are 17.9% and 52.1% higher respectively than those of MC nylon. When the content of nano-La2O3 is 1.0%, the impact strength, flexural strength and flexural modulus of nanocomposites reach maximum, which are 36.6 %, 12.7 % and 16.3 % higher respectively than those of MC nylon. 展开更多
关键词 MC nylon nano-La2O3 NANOCOMPOSITES in situ polymerization mechanical properties rare earths
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部