Logistic regression is a fast classifier and can achieve higher accuracy on small training data.Moreover,it can work on both discrete and continuous attributes with nonlinear patterns.Based on these properties of logi...Logistic regression is a fast classifier and can achieve higher accuracy on small training data.Moreover,it can work on both discrete and continuous attributes with nonlinear patterns.Based on these properties of logistic regression,this paper proposed an algorithm,called evolutionary logistical regression classifier(ELRClass),to solve the classification of evolving data streams.This algorithm applies logistic regression repeatedly to a sliding window of samples in order to update the existing classifier,to keep this classifier if its performance is deteriorated by the reason of bursting noise,or to construct a new classifier if a major concept drift is detected.The intensive experimental results demonstrate the effectiveness of this algorithm.展开更多
In this paper, a new algorithm HCOUNT + is proposed to find frequent items over data stream based on the HCOUNT algorithm. The new algorithm adopts aided measures to improve the precision of HCOUNT greatly. In additi...In this paper, a new algorithm HCOUNT + is proposed to find frequent items over data stream based on the HCOUNT algorithm. The new algorithm adopts aided measures to improve the precision of HCOUNT greatly. In addition,HCOUNT + is introduced to time critical applications and a novel sliding windows-based algorithm SL-HCOUNT + is proposed to mine the most frequent items occurring recently.This algorithm uses limited memory (nB · (1 +α) · e/ε·In(-M/lnρ)(α〈1) counters), requires constant processing time per packet (only (1+α) · ln(-M/lnρ(α〈1)) counters are updated), makes only one pass over the streaming data,and is shown to work well in the experimental results.展开更多
文摘Logistic regression is a fast classifier and can achieve higher accuracy on small training data.Moreover,it can work on both discrete and continuous attributes with nonlinear patterns.Based on these properties of logistic regression,this paper proposed an algorithm,called evolutionary logistical regression classifier(ELRClass),to solve the classification of evolving data streams.This algorithm applies logistic regression repeatedly to a sliding window of samples in order to update the existing classifier,to keep this classifier if its performance is deteriorated by the reason of bursting noise,or to construct a new classifier if a major concept drift is detected.The intensive experimental results demonstrate the effectiveness of this algorithm.
文摘In this paper, a new algorithm HCOUNT + is proposed to find frequent items over data stream based on the HCOUNT algorithm. The new algorithm adopts aided measures to improve the precision of HCOUNT greatly. In addition,HCOUNT + is introduced to time critical applications and a novel sliding windows-based algorithm SL-HCOUNT + is proposed to mine the most frequent items occurring recently.This algorithm uses limited memory (nB · (1 +α) · e/ε·In(-M/lnρ)(α〈1) counters), requires constant processing time per packet (only (1+α) · ln(-M/lnρ(α〈1)) counters are updated), makes only one pass over the streaming data,and is shown to work well in the experimental results.