期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于信息调控和MATCN的超短期风电功率多步预测
1
作者 陈磊 黄凯阳 +3 位作者 张怡 陈禹 张志瑞 尹振楠 《现代电子技术》 北大核心 2024年第18期1-7,共7页
对波动的风电功率进行有效预测,是电网供需平衡、系统稳定运行的重要保障。为此,提出一种基于信息调控和MATCN的超短期风电功率多步预测方法。利用现有数据衍生出高阶项与交互项,提升特征序列数量与有效特征占比。针对复杂的风电数据结... 对波动的风电功率进行有效预测,是电网供需平衡、系统稳定运行的重要保障。为此,提出一种基于信息调控和MATCN的超短期风电功率多步预测方法。利用现有数据衍生出高阶项与交互项,提升特征序列数量与有效特征占比。针对复杂的风电数据结构,使用变分模态分解(VMD)将其拆分,根据子序列相关性和方差贡献率的计算结果保留重要序列分量,其余分量进行聚合,降低计算负担,缩短训练时间。随后,引入注意力机制构造多头注意力时间卷积网络(MATCN),通过注意力得分调整网络内部卷积单元之间的传递信息,实现模型对各序列分量的预测。最后,重构序列分量预测值,得到最终的输出结果。在实例数据上对所提模型进行对比验证,结果表明,该模型在不同步幅下均具有较好的预测效果。 展开更多
关键词 风电功率 多步预测 变分模态分解 多头注意力时间卷积网络 注意力机制 信息调控
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部