期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于迭代剪枝VGGNet的火星图像分类 被引量:2
1
作者 刘猛 刘劲 +2 位作者 尹李君 康志伟 马辛 《液晶与显示》 CAS CSCD 北大核心 2023年第4期507-514,共8页
VGGNet能提供高精度的火星图像分类,但需消耗大量内存资源。鉴于器载计算机内存资源有限,为解决这一矛盾,本文提出了基于迭代剪枝VGGNet的火星图像分类方法。首先,采用迁移学习训练网络的连通性,以便评估神经元的重要性;其次,通过迭代... VGGNet能提供高精度的火星图像分类,但需消耗大量内存资源。鉴于器载计算机内存资源有限,为解决这一矛盾,本文提出了基于迭代剪枝VGGNet的火星图像分类方法。首先,采用迁移学习训练网络的连通性,以便评估神经元的重要性;其次,通过迭代剪枝方法修剪不重要的神经元,以便将全连接层的参数量和内存占用量减少;最后,采用K-means++聚类实现权重参数的量化,利用霍夫曼编码压缩迭代剪枝与量化后的VGGNet权重参数,达到减少存储量和浮点数运算量的作用。此外,通过5种数据增强方法进行数据扩充,目的是解决类别不平衡的问题。实验结果表明,压缩后的VGGNet模型的所占内存、Flops和准确率分别为62.63 Mb、150.6 MFlops和96.15%。与ShuffleNet、MobileNet和EfficientNet等轻量级图像分类算法相比,所提模型具有更好的性能。 展开更多
关键词 图像分类 卷积神经网络 迭代方法 聚类算法 VGGNet
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部