期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
域对抗图卷积注意力变工况故障研究
1
作者 邢如意 尹洪申 《组合机床与自动化加工技术》 北大核心 2024年第3期172-176,共5页
针对滚动轴承在变工况环境中网络特征提取能力不足的问题,提出了一种域对抗图卷积注意力迁移学习的故障诊断方法(DAGRESL)。首先,通过残差神经网络(residual network, Resnet)提取输入的轴承故障信息特征并通过Simam注意力模块增强Resne... 针对滚动轴承在变工况环境中网络特征提取能力不足的问题,提出了一种域对抗图卷积注意力迁移学习的故障诊断方法(DAGRESL)。首先,通过残差神经网络(residual network, Resnet)提取输入的轴承故障信息特征并通过Simam注意力模块增强Resnet的特征表达能力;其次,利用图生成层学习Resnet的特征数据并挖掘样本结构特征之间的关系来构造实例图;然后,利用图卷积网络(graph convolutional network, GCN)对实例图进行建模;最后,利用域判别器和局部最大平均差异(local maximum mean discrepancy, LMMD)对齐子域和全局域之间的分布并通过标签分类网络完成故障分类。通过在SQI-MFS轴承数据集的实验结果证明了所提出的DAGRESL模型能够精准地区分变工况轴承故障类型,有效解决了滚动轴承在变工况环境中网络特征提取能力不足的问题。 展开更多
关键词 故障诊断 变工况 卷积注意力模块 图卷积
下载PDF
小波包域对抗注意力迁移学习故障研究
2
作者 王景阳 尹洪申 +1 位作者 俞啸 张勋兵 《智能计算机与应用》 2023年第10期40-44,共5页
针对轴承故障特征提取能力不足、源域与目标域数据分布差异过大等问题,本文提出了一种基于小波包域对抗注意力迁移学习的故障诊断方法(WWRESE-IDALM)。首先,通过小波包变换(Wavelet Packet Transform,WPT)获得不同重点节构的时频域信息... 针对轴承故障特征提取能力不足、源域与目标域数据分布差异过大等问题,本文提出了一种基于小波包域对抗注意力迁移学习的故障诊断方法(WWRESE-IDALM)。首先,通过小波包变换(Wavelet Packet Transform,WPT)获得不同重点节构的时频域信息;其次,将重构后的时频域信息数据经过一层大卷积核和通道注意力模块(Squeeze and Excitation,SE)提取轴承深度关键信息特征;利用改进的域对抗网络(Domain-Adversarial Training of Neural Networks,DANN)和局部最大平均差异(Local Maximum Mean Discrepancy,LMMD)对齐子域分布,减少相关子域和全局域之间的结构差异;最后,通过标签分类网络完成故障分类。在帕德博恩大学轴承数据集诊断结果证明了所提出的WWRESE-IDALM方法具有良好的变工况故障分类能力。 展开更多
关键词 故障诊断 小波包变换 通道注意力模块 迁移学习
下载PDF
无监督对抗迁移学习轴承故障诊断 被引量:3
3
作者 袁海飞 尹洪申 俞啸 《组合机床与自动化加工技术》 北大核心 2022年第4期83-87,共5页
针对轴承故障诊断中数据标签获取困难、变工况诊断准确率低下、模型诊断泛化能力弱等问题,提出了一种无监督对抗迁移学习轴承故障诊断的方法(MSWDCNN-DA)。首先,将源域与目标域的振动信号经过一层大卷积核,提取轴承故障的短时特征;其次... 针对轴承故障诊断中数据标签获取困难、变工况诊断准确率低下、模型诊断泛化能力弱等问题,提出了一种无监督对抗迁移学习轴承故障诊断的方法(MSWDCNN-DA)。首先,将源域与目标域的振动信号经过一层大卷积核,提取轴承故障的短时特征;其次,根据不同卷积核获取的感受野不同,通过两个3×1、5×1的卷积核更加全面地获取不同层次的信号特征;然后,通过域对抗迁移模块,更好地对齐源域和目标数据之间的分布;最后,进行故障分类。通过在某大学轴承数据集中的实验,证明该模型在不同工况的数据集中都有较高的诊断准确率,表现出模型良好的泛化能力。 展开更多
关键词 故障诊断 对抗迁移学习 无监督 变工况
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部