期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
一种基于蚁狮优化的极限学习机 被引量:8
1
作者 尹洪红 杨晓文 +1 位作者 刘佳鸣 韩燮 《计算机应用与软件》 北大核心 2019年第8期230-234,共5页
极限学习机(Extreme Learning Machine,ELM)是一种高效率的单隐层前馈神经网络,由于其训练速度快与泛化性能好,在各个领域中都有广泛的应用。但是极限学习机随机生成输入权值与隐含层偏置矩阵,随机性影响训练模型的泛化性能与稳定性,降... 极限学习机(Extreme Learning Machine,ELM)是一种高效率的单隐层前馈神经网络,由于其训练速度快与泛化性能好,在各个领域中都有广泛的应用。但是极限学习机随机生成输入权值与隐含层偏置矩阵,随机性影响训练模型的泛化性能与稳定性,降低模型分类的精度。为了解决这一问题,借鉴蚁狮优化算法中利用蚁狮种群中的多个个体进行并行寻优的能力,改进优化极限学习机的输入权值与隐含层偏置矩阵,得到一个分类精度更高模型。以UCI标准数据库中数据进行分类实验分析验证,实验结果表明,在5类UCI数据集上基于蚁狮优化的极限学习机(ALO-ELM)相比于PSO-ELM和SaDE-ELM具有更高的分类精度。 展开更多
关键词 极限学习机 蚁狮优化 智能优化算法
下载PDF
灰狼优化的k均值聚类算法 被引量:10
2
作者 刘佳鸣 况立群 +1 位作者 尹洪红 韩燮 《中国科技论文》 CAS 北大核心 2019年第7期778-782,807,共6页
针对k均值聚类算法对初始聚类中心位置敏感的问题,提出了一种基于灰狼优化的k均值聚类算法,通过灰狼优化算法对解空间的全局寻优能力得到α狼,实现对k均值聚类中心的初始化操作,并通过迭代更新α狼优化k均值聚类中心,直到达到最大迭代次... 针对k均值聚类算法对初始聚类中心位置敏感的问题,提出了一种基于灰狼优化的k均值聚类算法,通过灰狼优化算法对解空间的全局寻优能力得到α狼,实现对k均值聚类中心的初始化操作,并通过迭代更新α狼优化k均值聚类中心,直到达到最大迭代次数,以此改进k均值聚类算法。实验结果表明,在UCI(University of California Irvine)的4类数据集上,所提算法相比于传统的k均值聚类算法,获得了更好的聚类效果,其分类准确度平均提高10%左右,且算法较为稳定。 展开更多
关键词 聚类分析 K均值 聚类中心 灰狼优化算法 群体智能优化算法
下载PDF
基于蚁狮优化的极限学习机的网格分割方法 被引量:6
3
作者 杨晓文 尹洪红 +1 位作者 韩燮 刘佳鸣 《激光与光电子学进展》 CSCD 北大核心 2020年第4期155-161,共7页
为了解决基于深度学习的网格分割方法在训练分割分类器过程中时间消耗大的问题,提出了一种基于蚁狮优化的极限学习机的网格分割方法。利用蚁狮优化算法中蚂蚁种群受精英蚁狮与轮盘赌策略的双重影响,迭代更新蚂蚁种群,将蚁狮种群与蚂蚁... 为了解决基于深度学习的网格分割方法在训练分割分类器过程中时间消耗大的问题,提出了一种基于蚁狮优化的极限学习机的网格分割方法。利用蚁狮优化算法中蚂蚁种群受精英蚁狮与轮盘赌策略的双重影响,迭代更新蚂蚁种群,将蚁狮种群与蚂蚁种群进行降序全排列,取最优的N个更新蚁狮种群,采用最优蚁狮更新精英蚁狮,保持精英蚁狮为最优解,从而优化极限学习机随机生成的输入权值矩阵与隐层偏置。采用改进的极限学习机方法训练得到一个高精度的分割分类器。以普林斯顿数据集中的6类模型进行实验,结果表明,对于Airplane、Ant、Chair、Octopus、Teddy和Fish模型数据集中训练面片数目为200000~300000的模型,所提方法的训练耗时约为1000s,且获得了较高的分割精确度,最高分割精确度可达99.49%。 展开更多
关键词 图像处理 极限学习机 群体智能 蚁狮优化 网格分割
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部