期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于RoBERTa_BiLSTM_CRF的文本情报命名实体识别
1
作者 陆泽健 赵文 尹港港 《中国电子科学研究院学报》 2024年第5期442-447,共6页
随着网络信息的爆炸式增长,威胁情报分析作为军事情报分析与战略决策的重要组成部分,其面临着来源多样化和信息结构复杂化的挑战。传统的人工信息提取方法在处理这些大量结构化及非结构化信息时效率低下,准确性有限。文中针对这一挑战,... 随着网络信息的爆炸式增长,威胁情报分析作为军事情报分析与战略决策的重要组成部分,其面临着来源多样化和信息结构复杂化的挑战。传统的人工信息提取方法在处理这些大量结构化及非结构化信息时效率低下,准确性有限。文中针对这一挑战,提出了一种结合RoBERTa、BiLSTM和条件随机场(Conditional Random Fields,CRF)的命名实体识别新算法。此算法通过Ro-BERTa模型深入挖掘文本的语义特征,BiLSTM模型捕捉序列上下文信息,CRF层用于精确的实体标记,从而有效提升信息提取的准确率和效率。本文基于开源情报语料库构建了一个涉及导弹发射事件的命名实体识别数据集,并在此基础上进行了实验,结果表明,该方法在精确率、召回率及F1值等关键指标上相较于主流深度学习方法表现出显著的性能提升,其中F1值高达94.21%。 展开更多
关键词 威胁情报分析 命名实体识别 RoBERTa BiLSTM CRF
下载PDF
大规模预训练模型在太空态势感知领域的应用思考
2
作者 尹港港 张峰 郭继光 《空天预警研究学报》 CSCD 2023年第5期355-363,共9页
随着航天科技和人类太空活动的快速演进,太空态势感知(SSA)的需求愈发突出.近些年,大规模预训练模型(LPTMs)在自然语言处理、图像处理、模式识别等领域表现卓越,在SSA中,这些技术也展现出巨大的应用潜力.为有效应对不断演变的太空环境... 随着航天科技和人类太空活动的快速演进,太空态势感知(SSA)的需求愈发突出.近些年,大规模预训练模型(LPTMs)在自然语言处理、图像处理、模式识别等领域表现卓越,在SSA中,这些技术也展现出巨大的应用潜力.为有效应对不断演变的太空环境带来的挑战,首先分析了SSA领域存在的瓶颈问题;然后针对SSA领域中的应用需求,提出了一系列潜在优势和应用方向;最后探讨了大规模预训练模型在SSA领域应用过程中所面临的关键挑战及可能的解决方案. 展开更多
关键词 太空态势感知 大规模预训练模型 自然语言处理 图像处理
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部