Silicon oxide films containing nanocrystalline silicon (nc-SiOx:H) are deposited by co-sputtering technology at low temperatures (〈400℃) that are much lower than the typical growth temperature of nc-Si in SiO2....Silicon oxide films containing nanocrystalline silicon (nc-SiOx:H) are deposited by co-sputtering technology at low temperatures (〈400℃) that are much lower than the typical growth temperature of nc-Si in SiO2. The microstructures and bonding properties are characterized by Raman and ETIR. It is proven that an optimum range of su bstrate temperatures for the deposition of nc-SiOx :H films is 200-400℃, in which the ratio of transition crystalline silicon decreases, the crystalline fraction is higher, and the hydrogen content is lower. The underlying mechanism is explained by a competitive process between nc-Si Wolmer-Weber growth and oxidation reaction, both of which achieve a balance in the range of 200-400℃. We further implement this technique in the fabrication of multilayered nc-SiO=:H/a-SiOx:H films, which exhibit controllable nc-Si sizes with high crystallization quality.展开更多
By using the plasma enhanced chemical vapor deposition(PECVD) technique, amorphous silicon oxide films containing nanocrystalline silicon grain(nc-Si O x:H) are deposited, and the bonding configurations and optic...By using the plasma enhanced chemical vapor deposition(PECVD) technique, amorphous silicon oxide films containing nanocrystalline silicon grain(nc-Si O x:H) are deposited, and the bonding configurations and optical absorption properties of the films are investigated. The grain size can be well controlled by varying the hydrogen and oxygen content,and the largest size is obtained when the hydrogen dilution ratio R is 33. The results show that the crystallinity and the grain size of the film first increased and then decreased as R increased. The highest degree of crystallinity is obtained at R = 30.The analyses of bonding characteristics and light absorption characteristics show that the incorporation of hydrogen leads to an increase of overall bonding oxygen content in the film, and the film porosity first increases and then decreases. When R = 30, the film can be more compact, the optical absorption edge of the film is blue shifted, and the film has a lower activation energy.展开更多
基金Supported by the Key Basic Research Project of Hebei Province under Grant No 12963930Dthe Natural Science Foundation of Hebei Province under Grant No F2013201250the Science and Technology Research Projects of the Educational Department of Hebei Province under Grant No ZH2012030
文摘Silicon oxide films containing nanocrystalline silicon (nc-SiOx:H) are deposited by co-sputtering technology at low temperatures (〈400℃) that are much lower than the typical growth temperature of nc-Si in SiO2. The microstructures and bonding properties are characterized by Raman and ETIR. It is proven that an optimum range of su bstrate temperatures for the deposition of nc-SiOx :H films is 200-400℃, in which the ratio of transition crystalline silicon decreases, the crystalline fraction is higher, and the hydrogen content is lower. The underlying mechanism is explained by a competitive process between nc-Si Wolmer-Weber growth and oxidation reaction, both of which achieve a balance in the range of 200-400℃. We further implement this technique in the fabrication of multilayered nc-SiO=:H/a-SiOx:H films, which exhibit controllable nc-Si sizes with high crystallization quality.
基金Project supported by the Key Basic Research Project of Hebei Province,China(Grant No.12963930D)the Natural Science Foundation of Hebei Province,China(Grant Nos.F2013201250 and B2012402011)
文摘By using the plasma enhanced chemical vapor deposition(PECVD) technique, amorphous silicon oxide films containing nanocrystalline silicon grain(nc-Si O x:H) are deposited, and the bonding configurations and optical absorption properties of the films are investigated. The grain size can be well controlled by varying the hydrogen and oxygen content,and the largest size is obtained when the hydrogen dilution ratio R is 33. The results show that the crystallinity and the grain size of the film first increased and then decreased as R increased. The highest degree of crystallinity is obtained at R = 30.The analyses of bonding characteristics and light absorption characteristics show that the incorporation of hydrogen leads to an increase of overall bonding oxygen content in the film, and the film porosity first increases and then decreases. When R = 30, the film can be more compact, the optical absorption edge of the film is blue shifted, and the film has a lower activation energy.