期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进的Faster R-CNN模型的异常鳞状上皮细胞检测 被引量:2
1
作者 尹远来 赵磊 《智能计算机与应用》 2021年第2期7-13,共7页
宫颈癌是目前世界上最常见的妇科恶性肿瘤,患者死亡率非常高。新柏氏液基细胞学检测(TCT)是宫颈癌筛查的基本方法,病理医生在显微镜下观察子宫颈脱落的鳞状上皮细胞,查看是否存在异常鳞状上皮细胞进行诊断。TCT对宫颈癌的检出率为100%,... 宫颈癌是目前世界上最常见的妇科恶性肿瘤,患者死亡率非常高。新柏氏液基细胞学检测(TCT)是宫颈癌筛查的基本方法,病理医生在显微镜下观察子宫颈脱落的鳞状上皮细胞,查看是否存在异常鳞状上皮细胞进行诊断。TCT对宫颈癌的检出率为100%,同时还可以发现部分癌前病变和微生物感染。目前国内的病理医生只有10000人左右,而且培养周期长,需求缺口极大。本文使用经过病理医生标注的数字病理图像,训练目标检测模型。设计了基于Faster R-CNN的网络结构改进的模型,引入了可形变卷积网络和特征金字塔网络,实现了对宫颈数字病理图像进行自动识别,为临床宫颈疾病诊断提供辅助参考。实验结果表明,改进后的模型能快速收敛,在测试集上的测试结果m AP(mean Average Precision)可以达到0.29,已经基本满足辅助病理医生诊断的需求(实际医院临床使用的模型m AP为0.32)。 展开更多
关键词 非典型鳞状细胞检测 Faster R-CNN 可形变卷积网络 特征金字塔网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部