Sr4CaSmTi3Nb7O30 ceramics are synthesized and indexed as tetragonal tungsten bronze structure. The dielectric behavior and ferroelectric nature are investigated. Three dielectric anomalies are observed. The phase tran...Sr4CaSmTi3Nb7O30 ceramics are synthesized and indexed as tetragonal tungsten bronze structure. The dielectric behavior and ferroelectric nature are investigated. Three dielectric anomalies are observed. The phase transition is a displacive phase transition with some diffusive characteristics, which indicates possible compositional variations within the materials on the microscopic scale. The weak distortion disappears in cooling process for differential scanning calorimetry measurement, and the large depression of Curie-Weiss temperature TO indicates the difficulty in forming macroferroelectric domain. The ferroelectric nature in these filled tungsten bronze niobates originates from the off-center displacement of B-site cations, but they are primarily dominated by A-site cation occupation. Both the radius and the valence of A1-site cations play an important role on ferroelectric properties of the filled tungsten bronze compounds. Existence of spontaneous polarization with a remanent polarization of 0.16 μC/cm^2 a coercive field of Ec = 11.74 kV/cm confirms the room-temperature ferroelectric nature of Sr4CaSmTi3Nb7O30 ceramics.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11174092 and 51002060)
文摘Sr4CaSmTi3Nb7O30 ceramics are synthesized and indexed as tetragonal tungsten bronze structure. The dielectric behavior and ferroelectric nature are investigated. Three dielectric anomalies are observed. The phase transition is a displacive phase transition with some diffusive characteristics, which indicates possible compositional variations within the materials on the microscopic scale. The weak distortion disappears in cooling process for differential scanning calorimetry measurement, and the large depression of Curie-Weiss temperature TO indicates the difficulty in forming macroferroelectric domain. The ferroelectric nature in these filled tungsten bronze niobates originates from the off-center displacement of B-site cations, but they are primarily dominated by A-site cation occupation. Both the radius and the valence of A1-site cations play an important role on ferroelectric properties of the filled tungsten bronze compounds. Existence of spontaneous polarization with a remanent polarization of 0.16 μC/cm^2 a coercive field of Ec = 11.74 kV/cm confirms the room-temperature ferroelectric nature of Sr4CaSmTi3Nb7O30 ceramics.