期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于数值积分公式的GM(1,1)模型优化研究 被引量:7
1
作者 沈艳 尹金姗 +1 位作者 韩帅 韩煜 《计算机工程与应用》 CSCD 北大核心 2019年第24期41-45,共5页
GM(1,1)模型采用最小二乘法求解参数,当数据中存在异常点时这种方法就会加大模型预测误差。从优化参数视角出发,利用基于Simpson积分公式的四阶Runge-Kutta法修正GM(1,1)模型参数辨识,提出一种新的改进GM(1,1)模型以降低模型的预测误差... GM(1,1)模型采用最小二乘法求解参数,当数据中存在异常点时这种方法就会加大模型预测误差。从优化参数视角出发,利用基于Simpson积分公式的四阶Runge-Kutta法修正GM(1,1)模型参数辨识,提出一种新的改进GM(1,1)模型以降低模型的预测误差。同时从不同发展系数取值和预测步数两种情形进一步分析改进模型的适用范围。通过实例验证了改进模型的有效性。 展开更多
关键词 GM(1 1)模型 发展系数 参数辨识 改进模型
下载PDF
基于Newton-Cotes求积公式的GM(1,1)模型优化研究 被引量:2
2
作者 沈艳 尹金姗 《应用科技》 CAS 2019年第4期26-31,共6页
通过GM(1,1)模型构建过程发现,背景值的构造方式是影响模型预测精度的主要因素之一。为了提高GM(1,1)模型的预测精度,从背景值的几何意义出发,依据数据序列生成指数规律建立灰色动态序列预测模型,结合数值积分理论中的三、四阶Newton-Co... 通过GM(1,1)模型构建过程发现,背景值的构造方式是影响模型预测精度的主要因素之一。为了提高GM(1,1)模型的预测精度,从背景值的几何意义出发,依据数据序列生成指数规律建立灰色动态序列预测模型,结合数值积分理论中的三、四阶Newton-Cotes求积公式提出两种背景值改进方法。与此同时,就发展系数不同取值以及不同预测步数两种情形分析了改进方法的适用范围。实例结果表明,两种改进背景值后的GM(1,1)模型对预测精度有着显著提高,并且扩展了GM(1,1)模型的适用性。 展开更多
关键词 GM(1 1)模型 背景值 灰色动态序列预测模型 改进模型 预测精度
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部