基于相似学习者判定方法由于具有轻量级的特点而被广泛用于个性化推荐领域,目前一般采用协同过滤等机器学习的方法,但此类方法并不能保证判定过程的可解释性以及判定结果的可信性。针对这一问题,提出一种基于相似学习者判定的个性化学...基于相似学习者判定方法由于具有轻量级的特点而被广泛用于个性化推荐领域,目前一般采用协同过滤等机器学习的方法,但此类方法并不能保证判定过程的可解释性以及判定结果的可信性。针对这一问题,提出一种基于相似学习者判定的个性化学习路径推荐及验证方法,采用进程互模拟的方式研究相似学习者的判定过程。首先,扩展CCS(Calculus of Communication System)的行为特性,提出LR-CCS(Learning Resources-Calculus of Communication System),用于建模学习者的学习行为序列;其次,通过进程代数中互模拟理论判定学习者学习行为序列相似性,提出学习行为序列强(弱)互模拟关系判定算法进行互模拟关系判定;再次,使用互模拟验证工具MWB(Mobile Workbench)验证学习者学习行为序列相似性,得到满足互模拟关系的候选推荐路径,以保证判定结果的正确性;最后通过一个基于相似学习者的推荐系统实例验证了该方法的有效性。展开更多
文摘基于相似学习者判定方法由于具有轻量级的特点而被广泛用于个性化推荐领域,目前一般采用协同过滤等机器学习的方法,但此类方法并不能保证判定过程的可解释性以及判定结果的可信性。针对这一问题,提出一种基于相似学习者判定的个性化学习路径推荐及验证方法,采用进程互模拟的方式研究相似学习者的判定过程。首先,扩展CCS(Calculus of Communication System)的行为特性,提出LR-CCS(Learning Resources-Calculus of Communication System),用于建模学习者的学习行为序列;其次,通过进程代数中互模拟理论判定学习者学习行为序列相似性,提出学习行为序列强(弱)互模拟关系判定算法进行互模拟关系判定;再次,使用互模拟验证工具MWB(Mobile Workbench)验证学习者学习行为序列相似性,得到满足互模拟关系的候选推荐路径,以保证判定结果的正确性;最后通过一个基于相似学习者的推荐系统实例验证了该方法的有效性。